Spaces:
Sleeping
Sleeping
File size: 11,434 Bytes
9297977 92287cb 0c8faca e20a82b 92287cb 9297977 f0111d1 92287cb f0111d1 92287cb f0111d1 92287cb f0111d1 92287cb f0111d1 9297977 f0111d1 9297977 f0111d1 e20a82b 9297977 f0111d1 9297977 f0111d1 9297977 f0111d1 9297977 f0111d1 e20a82b 92287cb e20a82b 9297977 92287cb 9297977 a5a84d4 92287cb 9297977 f0111d1 ce3b970 f0111d1 ce3b970 e20a82b ce3b970 e20a82b ce3b970 e20a82b ce3b970 f0111d1 ce3b970 9297977 92287cb e20a82b 9297977 92287cb 118a5c5 92287cb 9297977 92287cb ce3b970 118a5c5 92287cb 9297977 92287cb 9297977 85ab85d 92287cb 118a5c5 ce3b970 92287cb ce3b970 85ab85d ce3b970 85ab85d 118a5c5 92287cb ce3b970 92287cb ce3b970 9297977 92287cb ce3b970 9297977 118a5c5 9297977 92287cb 9297977 92287cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import gradio as gr
import spaces
import pandas as pd
import torch
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
import plotly.graph_objects as go
import logging
import io
from rapidfuzz import fuzz
def fuzzy_deduplicate(df, column, threshold=55):
"""Deduplicate rows based on fuzzy matching of text content"""
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EventDetector:
def __init__(self):
self.model_name = "google/mt5-small"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = None
self.finbert = None
self.roberta = None
self.finbert_tone = None
@spaces.GPU
def initialize_models(self):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Initializing models on device: {device}")
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
self.finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert", device=device)
self.roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment", device=device)
self.finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone", device=device)
return True
except Exception as e:
logger.error(f"Model initialization error: {str(e)}")
return False
@spaces.GPU
def detect_events(self, text, entity):
if not text or not entity:
return "Нет", "Invalid input"
try:
if self.model is None:
if not self.initialize_models():
return "Нет", "Model initialization failed"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Truncate input text to avoid tensor size mismatch
text = text[:500] # Adjust this value if needed
prompt = f"""<s>Analyze the following news about {entity}:
Text: {text}
Task: Identify the main event type and provide a brief summary.</s>"""
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True,
truncation=True, max_length=512).to(device)
outputs = self.model.generate(**inputs, max_length=300, num_return_sequences=1)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
event_type = "Нет"
if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']):
event_type = "Отчетность"
elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт']):
event_type = "РЦБ"
elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']):
event_type = "Суд"
return event_type, response
except Exception as e:
logger.error(f"Event detection error: {str(e)}")
return "Нет", f"Error: {str(e)}"
@spaces.GPU
def analyze_sentiment(self, text):
try:
if self.finbert is None:
if not self.initialize_models():
return "Neutral"
# Truncate text to avoid tensor size issues
truncated_text = text[:500]
results = []
try:
# Process text with all models in a batch
inputs = [truncated_text]
finbert_result = self.finbert(inputs, truncation=True, max_length=512)[0]
roberta_result = self.roberta(inputs, truncation=True, max_length=512)[0]
finbert_tone_result = self.finbert_tone(inputs, truncation=True, max_length=512)[0]
results = [
self._get_sentiment(finbert_result),
self._get_sentiment(roberta_result),
self._get_sentiment(finbert_tone_result)
]
except Exception as e:
logger.error(f"Model inference error: {e}")
return "Neutral"
sentiment_counts = pd.Series(results).value_counts()
return sentiment_counts.index[0] if sentiment_counts.iloc[0] >= 2 else "Neutral"
except Exception as e:
logger.error(f"Sentiment analysis error: {e}")
return "Neutral"
def create_visualizations(df):
if df is None or df.empty:
return None, None
try:
sentiments = df['Sentiment'].value_counts()
fig_sentiment = go.Figure(data=[go.Pie(
labels=sentiments.index,
values=sentiments.values,
marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6']
)])
fig_sentiment.update_layout(title="Распределение тональности")
events = df['Event_Type'].value_counts()
fig_events = go.Figure(data=[go.Bar(
x=events.index,
y=events.values,
marker_color='#2196F3'
)])
fig_events.update_layout(title="Распределение событий")
return fig_sentiment, fig_events
except Exception as e:
logger.error(f"Visualization error: {e}")
return None, None
@spaces.GPU
def process_file(file_obj):
try:
logger.info("Starting to read Excel file...")
df = pd.read_excel(file_obj, sheet_name='Публикации')
logger.info(f"Successfully read Excel file. Shape: {df.shape}")
# Perform deduplication
original_count = len(df)
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
logger.info(f"Removed {original_count - len(df)} duplicate entries")
detector = EventDetector()
processed_rows = []
total = len(df)
# Initialize models once for all rows
if not detector.initialize_models():
raise Exception("Failed to initialize models")
for idx, row in df.iterrows():
try:
text = str(row.get('Выдержки из текста', ''))
if not text.strip():
continue
entity = str(row.get('Объект', ''))
if not entity.strip():
continue
event_type, event_summary = detector.detect_events(text, entity)
sentiment = detector.analyze_sentiment(text)
processed_rows.append({
'Объект': entity,
'Заголовок': str(row.get('Заголовок', '')),
'Sentiment': sentiment,
'Event_Type': event_type,
'Event_Summary': event_summary,
'Текст': text[:1000] # Truncate text for display
})
if idx % 5 == 0:
logger.info(f"Processed {idx + 1}/{total} rows")
except Exception as e:
logger.error(f"Error processing row {idx}: {str(e)}")
continue
result_df = pd.DataFrame(processed_rows)
logger.info(f"Processing complete. Final DataFrame shape: {result_df.shape}")
return result_df
except Exception as e:
logger.error(f"File processing error: {str(e)}")
raise
def create_interface():
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# AI-анализ мониторинга новостей v.1.11")
with gr.Row():
file_input = gr.File(
label="Загрузите Excel файл",
file_types=[".xlsx"],
type="binary"
)
with gr.Row():
analyze_btn = gr.Button(
"Начать анализ",
variant="primary"
)
with gr.Row():
progress = gr.Textbox(
label="Статус обработки",
interactive=False,
value="Ожидание файла..."
)
with gr.Row():
stats = gr.DataFrame(
label="Результаты анализа",
interactive=False,
wrap=True
)
with gr.Row():
with gr.Column():
sentiment_plot = gr.Plot(label="Распределение тональности")
with gr.Column():
events_plot = gr.Plot(label="Распределение событий")
def analyze(file_bytes):
if file_bytes is None:
gr.Warning("Пожалуйста, загрузите файл")
return None, None, None, "Ожидание файла..."
try:
# Create BytesIO object and debug print its content
file_obj = io.BytesIO(file_bytes)
logger.info("File loaded into BytesIO successfully")
# Process file with progress updates
progress_status = "Начинаем обработку файла..."
yield None, None, None, progress_status
df = process_file(file_obj)
if df.empty:
return None, None, None, "Нет данных для обработки"
progress_status = f"Создание визуализаций..."
yield None, None, None, progress_status
fig_sentiment, fig_events = create_visualizations(df)
return (
df,
fig_sentiment,
fig_events,
f"Обработка завершена успешно! Обработано {len(df)} строк"
)
except Exception as e:
error_msg = f"Ошибка анализа: {str(e)}"
logger.error(error_msg)
gr.Error(error_msg)
return None, None, None, error_msg
analyze_btn.click(
fn=analyze,
inputs=[file_input],
outputs=[stats, sentiment_plot, events_plot, progress]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(share=True) |