File size: 11,434 Bytes
9297977
 
 
 
 
 
92287cb
0c8faca
e20a82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92287cb
 
 
9297977
 
 
f0111d1
 
 
 
 
 
 
 
 
92287cb
f0111d1
 
92287cb
f0111d1
 
 
 
92287cb
f0111d1
92287cb
f0111d1
 
9297977
f0111d1
9297977
 
 
 
 
f0111d1
 
 
 
 
e20a82b
 
 
9297977
 
 
 
 
f0111d1
9297977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0111d1
9297977
 
f0111d1
9297977
 
f0111d1
 
 
 
e20a82b
 
92287cb
e20a82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9297977
 
 
 
 
92287cb
9297977
 
 
a5a84d4
 
 
92287cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9297977
f0111d1
ce3b970
 
 
f0111d1
 
ce3b970
e20a82b
 
 
 
 
ce3b970
 
 
 
e20a82b
 
 
 
ce3b970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e20a82b
ce3b970
 
f0111d1
 
 
ce3b970
 
 
 
 
 
 
 
 
 
 
 
 
9297977
92287cb
e20a82b
9297977
 
92287cb
 
 
118a5c5
92287cb
9297977
 
92287cb
 
 
 
 
 
 
ce3b970
118a5c5
 
92287cb
9297977
 
92287cb
 
 
 
 
9297977
 
 
 
 
 
 
85ab85d
 
92287cb
118a5c5
ce3b970
92287cb
ce3b970
85ab85d
ce3b970
 
 
 
 
 
85ab85d
118a5c5
92287cb
 
ce3b970
 
 
 
92287cb
ce3b970
 
 
 
 
 
 
9297977
92287cb
ce3b970
 
 
 
9297977
 
118a5c5
9297977
92287cb
9297977
 
 
 
 
 
92287cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import gradio as gr
import spaces
import pandas as pd
import torch
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
import plotly.graph_objects as go
import logging
import io
from rapidfuzz import fuzz

def fuzzy_deduplicate(df, column, threshold=55):
    """Deduplicate rows based on fuzzy matching of text content"""
    seen_texts = []
    indices_to_keep = []
    
    for i, text in enumerate(df[column]):
        if pd.isna(text):
            indices_to_keep.append(i)
            continue
            
        text = str(text)
        if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
            seen_texts.append(text)
            indices_to_keep.append(i)
            
    return df.iloc[indices_to_keep]

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class EventDetector:
    def __init__(self):
        self.model_name = "google/mt5-small"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = None
        self.finbert = None
        self.roberta = None
        self.finbert_tone = None
        
    @spaces.GPU
    def initialize_models(self):
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            logger.info(f"Initializing models on device: {device}")
            
            self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
            self.finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert", device=device)
            self.roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment", device=device)
            self.finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone", device=device)
            
            return True
        except Exception as e:
            logger.error(f"Model initialization error: {str(e)}")
            return False

    @spaces.GPU
    def detect_events(self, text, entity):
        if not text or not entity:
            return "Нет", "Invalid input"
            
        try:
            if self.model is None:
                if not self.initialize_models():
                    return "Нет", "Model initialization failed"
            
            device = "cuda" if torch.cuda.is_available() else "cpu"
            # Truncate input text to avoid tensor size mismatch
            text = text[:500]  # Adjust this value if needed
            
            prompt = f"""<s>Analyze the following news about {entity}:
            Text: {text}
            Task: Identify the main event type and provide a brief summary.</s>"""
            
            inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, 
                                  truncation=True, max_length=512).to(device)
            
            outputs = self.model.generate(**inputs, max_length=300, num_return_sequences=1)
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            event_type = "Нет"
            if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']):
                event_type = "Отчетность"
            elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт']):
                event_type = "РЦБ"
            elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']):
                event_type = "Суд"
                
            return event_type, response
            
        except Exception as e:
            logger.error(f"Event detection error: {str(e)}")
            return "Нет", f"Error: {str(e)}"

    @spaces.GPU
    def analyze_sentiment(self, text):
        try:
            if self.finbert is None:
                if not self.initialize_models():
                    return "Neutral"
            
            # Truncate text to avoid tensor size issues
            truncated_text = text[:500]
            
            results = []
            try:
                # Process text with all models in a batch
                inputs = [truncated_text]
                finbert_result = self.finbert(inputs, truncation=True, max_length=512)[0]
                roberta_result = self.roberta(inputs, truncation=True, max_length=512)[0]
                finbert_tone_result = self.finbert_tone(inputs, truncation=True, max_length=512)[0]
                
                results = [
                    self._get_sentiment(finbert_result),
                    self._get_sentiment(roberta_result),
                    self._get_sentiment(finbert_tone_result)
                ]
                
            except Exception as e:
                logger.error(f"Model inference error: {e}")
                return "Neutral"
            
            sentiment_counts = pd.Series(results).value_counts()
            return sentiment_counts.index[0] if sentiment_counts.iloc[0] >= 2 else "Neutral"
            
        except Exception as e:
            logger.error(f"Sentiment analysis error: {e}")
            return "Neutral"

def create_visualizations(df):
    if df is None or df.empty:
        return None, None
        
    try:
        sentiments = df['Sentiment'].value_counts()
        fig_sentiment = go.Figure(data=[go.Pie(
            labels=sentiments.index,
            values=sentiments.values,
            marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6']
        )])
        fig_sentiment.update_layout(title="Распределение тональности")
        
        events = df['Event_Type'].value_counts()
        fig_events = go.Figure(data=[go.Bar(
            x=events.index,
            y=events.values,
            marker_color='#2196F3'
        )])
        fig_events.update_layout(title="Распределение событий")
        
        return fig_sentiment, fig_events
        
    except Exception as e:
        logger.error(f"Visualization error: {e}")
        return None, None

@spaces.GPU
def process_file(file_obj):
    try:
        logger.info("Starting to read Excel file...")
        df = pd.read_excel(file_obj, sheet_name='Публикации')
        logger.info(f"Successfully read Excel file. Shape: {df.shape}")
        
        # Perform deduplication
        original_count = len(df)
        df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
        logger.info(f"Removed {original_count - len(df)} duplicate entries")
        
        detector = EventDetector()
        processed_rows = []
        total = len(df)
        
        # Initialize models once for all rows
        if not detector.initialize_models():
            raise Exception("Failed to initialize models")
        
        for idx, row in df.iterrows():
            try:
                text = str(row.get('Выдержки из текста', ''))
                if not text.strip():
                    continue
                    
                entity = str(row.get('Объект', ''))
                if not entity.strip():
                    continue
                
                event_type, event_summary = detector.detect_events(text, entity)
                sentiment = detector.analyze_sentiment(text)
                
                processed_rows.append({
                    'Объект': entity,
                    'Заголовок': str(row.get('Заголовок', '')),
                    'Sentiment': sentiment,
                    'Event_Type': event_type,
                    'Event_Summary': event_summary,
                    'Текст': text[:1000]  # Truncate text for display
                })
                
                if idx % 5 == 0:
                    logger.info(f"Processed {idx + 1}/{total} rows")
                    
            except Exception as e:
                logger.error(f"Error processing row {idx}: {str(e)}")
                continue
        
        result_df = pd.DataFrame(processed_rows)
        logger.info(f"Processing complete. Final DataFrame shape: {result_df.shape}")
        
        return result_df
        
    except Exception as e:
        logger.error(f"File processing error: {str(e)}")
        raise

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        gr.Markdown("# AI-анализ мониторинга новостей v.1.11")
        
        with gr.Row():
            file_input = gr.File(
                label="Загрузите Excel файл",
                file_types=[".xlsx"],
                type="binary"
            )
        
        with gr.Row():
            analyze_btn = gr.Button(
                "Начать анализ",
                variant="primary"
            )
            
        with gr.Row():
            progress = gr.Textbox(
                label="Статус обработки",
                interactive=False,
                value="Ожидание файла..."
            )
        
        with gr.Row():
            stats = gr.DataFrame(
                label="Результаты анализа",
                interactive=False,
                wrap=True
            )
            
        with gr.Row():
            with gr.Column():
                sentiment_plot = gr.Plot(label="Распределение тональности")
            with gr.Column():
                events_plot = gr.Plot(label="Распределение событий")
                
        def analyze(file_bytes):
            if file_bytes is None:
                gr.Warning("Пожалуйста, загрузите файл")
                return None, None, None, "Ожидание файла..."
                
            try:
                # Create BytesIO object and debug print its content
                file_obj = io.BytesIO(file_bytes)
                logger.info("File loaded into BytesIO successfully")
                
                # Process file with progress updates
                progress_status = "Начинаем обработку файла..."
                yield None, None, None, progress_status
                
                df = process_file(file_obj)
                
                if df.empty:
                    return None, None, None, "Нет данных для обработки"
                
                progress_status = f"Создание визуализаций..."
                yield None, None, None, progress_status
                
                fig_sentiment, fig_events = create_visualizations(df)
                
                return (
                    df, 
                    fig_sentiment, 
                    fig_events, 
                    f"Обработка завершена успешно! Обработано {len(df)} строк"
                )
                
            except Exception as e:
                error_msg = f"Ошибка анализа: {str(e)}"
                logger.error(error_msg)
                gr.Error(error_msg)
                return None, None, None, error_msg
            
        analyze_btn.click(
            fn=analyze,
            inputs=[file_input],
            outputs=[stats, sentiment_plot, events_plot, progress]
        )
        
    return app

if __name__ == "__main__":
    app = create_interface()
    app.launch(share=True)