Spaces:
Sleeping
Sleeping
Commit
·
85ab85d
1
Parent(s):
118a5c5
v.1.08
Browse files
app.py
CHANGED
@@ -88,42 +88,6 @@ class EventDetector:
|
|
88 |
return "Negative"
|
89 |
return "Neutral"
|
90 |
|
91 |
-
def process_file(file):
|
92 |
-
try:
|
93 |
-
df = pd.read_excel(file, sheet_name='Публикации')
|
94 |
-
detector = EventDetector()
|
95 |
-
processed_rows = []
|
96 |
-
total = len(df)
|
97 |
-
|
98 |
-
for idx, row in df.iterrows():
|
99 |
-
text = str(row.get('Выдержки из текста', ''))
|
100 |
-
entity = str(row.get('Объект', ''))
|
101 |
-
|
102 |
-
event_type, event_summary = detector.detect_events(text, entity)
|
103 |
-
sentiment = detector.analyze_sentiment(text)
|
104 |
-
|
105 |
-
processed_rows.append({
|
106 |
-
'Объект': entity,
|
107 |
-
'Заголовок': str(row.get('Заголовок', '')),
|
108 |
-
'Sentiment': sentiment,
|
109 |
-
'Event_Type': event_type,
|
110 |
-
'Event_Summary': event_summary,
|
111 |
-
'Текст': text
|
112 |
-
})
|
113 |
-
|
114 |
-
# Log progress to console instead of updating UI directly
|
115 |
-
if idx % 10 == 0:
|
116 |
-
logger.info(f"Processed {idx}/{total} rows")
|
117 |
-
|
118 |
-
result_df = pd.DataFrame(processed_rows)
|
119 |
-
logger.info("File processing complete!")
|
120 |
-
return result_df
|
121 |
-
|
122 |
-
except Exception as e:
|
123 |
-
logger.error(f"File processing error: {e}")
|
124 |
-
gr.Error(f"Error processing file: {str(e)}")
|
125 |
-
return pd.DataFrame(columns=['Объект', 'Заголовок', 'Sentiment', 'Event_Type', 'Event_Summary', 'Текст'])
|
126 |
-
|
127 |
def create_visualizations(df):
|
128 |
if df is None or df.empty:
|
129 |
return None, None
|
@@ -153,7 +117,7 @@ def create_visualizations(df):
|
|
153 |
|
154 |
def create_interface():
|
155 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
156 |
-
gr.Markdown("# AI-анализ мониторинга новостей v.1.
|
157 |
|
158 |
with gr.Row():
|
159 |
file_input = gr.File(
|
@@ -188,14 +152,14 @@ def create_interface():
|
|
188 |
with gr.Column():
|
189 |
events_plot = gr.Plot(label="Распределение событий")
|
190 |
|
191 |
-
def analyze(
|
192 |
-
if
|
193 |
gr.Warning("Пожалуйста, загрузите файл")
|
194 |
return None, None, None, "Ожидание файла..."
|
195 |
try:
|
196 |
-
#
|
197 |
-
|
198 |
-
df = process_file(
|
199 |
|
200 |
if df.empty:
|
201 |
return None, None, None, "Нет данных для обработки"
|
@@ -216,6 +180,42 @@ def create_interface():
|
|
216 |
|
217 |
return app
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
if __name__ == "__main__":
|
220 |
app = create_interface()
|
221 |
app.launch(share=True)
|
|
|
88 |
return "Negative"
|
89 |
return "Neutral"
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def create_visualizations(df):
|
92 |
if df is None or df.empty:
|
93 |
return None, None
|
|
|
117 |
|
118 |
def create_interface():
|
119 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
120 |
+
gr.Markdown("# AI-анализ мониторинга новостей v.1.08")
|
121 |
|
122 |
with gr.Row():
|
123 |
file_input = gr.File(
|
|
|
152 |
with gr.Column():
|
153 |
events_plot = gr.Plot(label="Распределение событий")
|
154 |
|
155 |
+
def analyze(file_bytes):
|
156 |
+
if file_bytes is None:
|
157 |
gr.Warning("Пожалуйста, загрузите файл")
|
158 |
return None, None, None, "Ожидание файла..."
|
159 |
try:
|
160 |
+
# Convert bytes to BytesIO for pandas to read
|
161 |
+
file_obj = io.BytesIO(file_bytes)
|
162 |
+
df = process_file(file_obj)
|
163 |
|
164 |
if df.empty:
|
165 |
return None, None, None, "Нет данных для обработки"
|
|
|
180 |
|
181 |
return app
|
182 |
|
183 |
+
def process_file(file_obj):
|
184 |
+
try:
|
185 |
+
# Read Excel directly from BytesIO object
|
186 |
+
df = pd.read_excel(file_obj, sheet_name='Публикации')
|
187 |
+
detector = EventDetector()
|
188 |
+
processed_rows = []
|
189 |
+
total = len(df)
|
190 |
+
|
191 |
+
for idx, row in df.iterrows():
|
192 |
+
text = str(row.get('Выдержки из текста', ''))
|
193 |
+
entity = str(row.get('Объект', ''))
|
194 |
+
|
195 |
+
event_type, event_summary = detector.detect_events(text, entity)
|
196 |
+
sentiment = detector.analyze_sentiment(text)
|
197 |
+
|
198 |
+
processed_rows.append({
|
199 |
+
'Объект': entity,
|
200 |
+
'Заголовок': str(row.get('Заголовок', '')),
|
201 |
+
'Sentiment': sentiment,
|
202 |
+
'Event_Type': event_type,
|
203 |
+
'Event_Summary': event_summary,
|
204 |
+
'Текст': text
|
205 |
+
})
|
206 |
+
|
207 |
+
if idx % 10 == 0:
|
208 |
+
logger.info(f"Processed {idx}/{total} rows")
|
209 |
+
|
210 |
+
result_df = pd.DataFrame(processed_rows)
|
211 |
+
logger.info("File processing complete!")
|
212 |
+
return result_df
|
213 |
+
|
214 |
+
except Exception as e:
|
215 |
+
logger.error(f"File processing error: {e}")
|
216 |
+
gr.Error(f"Error processing file: {str(e)}")
|
217 |
+
return pd.DataFrame(columns=['Объект', 'Заголовок', 'Sentiment', 'Event_Type', 'Event_Summary', 'Текст'])
|
218 |
+
|
219 |
if __name__ == "__main__":
|
220 |
app = create_interface()
|
221 |
app.launch(share=True)
|