Spaces:
Sleeping
Sleeping
File size: 15,800 Bytes
9297977 92287cb 0c8faca e20a82b 92287cb 9297977 4feef77 9297977 f0111d1 412ee33 f0111d1 4feef77 9297977 412ee33 4feef77 9297977 f0111d1 9297977 f0111d1 e20a82b 4feef77 e20a82b 412ee33 e20a82b 4feef77 e20a82b 9297977 92287cb 9297977 a5a84d4 92287cb 9297977 f0111d1 ce3b970 f0111d1 ce3b970 e20a82b ce3b970 e20a82b ce3b970 e20a82b ce3b970 f0111d1 ce3b970 9297977 4feef77 92287cb 412ee33 9297977 92287cb 118a5c5 92287cb 9297977 2a0d401 4feef77 2a0d401 4feef77 2a0d401 4feef77 2a0d401 4feef77 92287cb ce3b970 118a5c5 92287cb 9297977 92287cb 9297977 2a0d401 9297977 2a0d401 9297977 4feef77 85ab85d 92287cb 118a5c5 ce3b970 92287cb 4feef77 85ab85d ce3b970 4feef77 118a5c5 4feef77 ce3b970 4feef77 ce3b970 4feef77 ce3b970 4feef77 ce3b970 9297977 92287cb ce3b970 9297977 4feef77 9297977 118a5c5 9297977 92287cb 9297977 92287cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import gradio as gr
import spaces
import pandas as pd
import torch
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
import plotly.graph_objects as go
import logging
import io
from rapidfuzz import fuzz
def fuzzy_deduplicate(df, column, threshold=55):
"""Deduplicate rows based on fuzzy matching of text content"""
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ProcessControl:
def __init__(self):
self.stop_requested = False
def request_stop(self):
self.stop_requested = True
def should_stop(self):
return self.stop_requested
def reset(self):
self.stop_requested = False
class EventDetector:
def __init__(self):
self.model_name = "google/mt5-small"
# Initialize tokenizer with legacy=True to suppress warning
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
legacy=True
)
self.model = None
self.finbert = None
self.roberta = None
self.finbert_tone = None
self.control = ProcessControl()
@spaces.GPU
def initialize_models(self):
"""Initialize all models with GPU support"""
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Initializing models on device: {device}")
# Initialize MT5 model
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device)
# Initialize sentiment analysis pipelines
self.finbert = pipeline(
"sentiment-analysis",
model="ProsusAI/finbert",
device=device,
truncation=True,
max_length=512
)
self.roberta = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment",
device=device,
truncation=True,
max_length=512
)
self.finbert_tone = pipeline(
"sentiment-analysis",
model="yiyanghkust/finbert-tone",
device=device,
truncation=True,
max_length=512
)
logger.info("All models initialized successfully")
return True
except Exception as e:
logger.error(f"Model initialization error: {str(e)}")
return False
@spaces.GPU
def detect_events(self, text, entity):
if not text or not entity:
return "Нет", "Invalid input"
try:
# Check if models are initialized
if self.model is None:
if not self.initialize_models():
return "Нет", "Model initialization failed"
# Truncate input text
text = text[:500]
prompt = f"""<s>Analyze the following news about {entity}:
Text: {text}
Task: Identify the main event type and provide a brief summary.</s>"""
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(self.model.device)
outputs = self.model.generate(
**inputs,
max_length=300,
num_return_sequences=1,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
event_type = "Нет"
if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']):
event_type = "Отчетность"
elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт']):
event_type = "РЦБ"
elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']):
event_type = "Суд"
return event_type, response
except Exception as e:
logger.error(f"Event detection error: {str(e)}")
return "Нет", f"Error: {str(e)}"
def get_sentiment_label(self, result):
"""Helper method for sentiment classification"""
label = result['label'].lower()
if label in ["positive", "label_2", "pos"]:
return "Positive"
elif label in ["negative", "label_0", "neg"]:
return "Negative"
return "Neutral"
@spaces.GPU
def analyze_sentiment(self, text):
try:
if self.finbert is None:
if not self.initialize_models():
return "Neutral"
truncated_text = text[:500]
results = []
try:
inputs = [truncated_text]
finbert_result = self.finbert(inputs)[0]
roberta_result = self.roberta(inputs)[0]
finbert_tone_result = self.finbert_tone(inputs)[0]
results = [
self.get_sentiment_label(finbert_result),
self.get_sentiment_label(roberta_result),
self.get_sentiment_label(finbert_tone_result)
]
except Exception as e:
logger.error(f"Model inference error: {e}")
return "Neutral"
sentiment_counts = pd.Series(results).value_counts()
return sentiment_counts.index[0] if sentiment_counts.iloc[0] >= 2 else "Neutral"
except Exception as e:
logger.error(f"Sentiment analysis error: {e}")
return "Neutral"
def create_visualizations(df):
if df is None or df.empty:
return None, None
try:
sentiments = df['Sentiment'].value_counts()
fig_sentiment = go.Figure(data=[go.Pie(
labels=sentiments.index,
values=sentiments.values,
marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6']
)])
fig_sentiment.update_layout(title="Распределение тональности")
events = df['Event_Type'].value_counts()
fig_events = go.Figure(data=[go.Bar(
x=events.index,
y=events.values,
marker_color='#2196F3'
)])
fig_events.update_layout(title="Распределение событий")
return fig_sentiment, fig_events
except Exception as e:
logger.error(f"Visualization error: {e}")
return None, None
@spaces.GPU
def process_file(file_obj):
try:
logger.info("Starting to read Excel file...")
df = pd.read_excel(file_obj, sheet_name='Публикации')
logger.info(f"Successfully read Excel file. Shape: {df.shape}")
# Perform deduplication
original_count = len(df)
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
logger.info(f"Removed {original_count - len(df)} duplicate entries")
detector = EventDetector()
processed_rows = []
total = len(df)
# Initialize models once for all rows
if not detector.initialize_models():
raise Exception("Failed to initialize models")
for idx, row in df.iterrows():
try:
text = str(row.get('Выдержки из текста', ''))
if not text.strip():
continue
entity = str(row.get('Объект', ''))
if not entity.strip():
continue
event_type, event_summary = detector.detect_events(text, entity)
sentiment = detector.analyze_sentiment(text)
processed_rows.append({
'Объект': entity,
'Заголовок': str(row.get('Заголовок', '')),
'Sentiment': sentiment,
'Event_Type': event_type,
'Event_Summary': event_summary,
'Текст': text[:1000] # Truncate text for display
})
if idx % 5 == 0:
logger.info(f"Processed {idx + 1}/{total} rows")
except Exception as e:
logger.error(f"Error processing row {idx}: {str(e)}")
continue
result_df = pd.DataFrame(processed_rows)
logger.info(f"Processing complete. Final DataFrame shape: {result_df.shape}")
return result_df
except Exception as e:
logger.error(f"File processing error: {str(e)}")
raise
def create_interface():
control = ProcessControl()
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# AI-анализ мониторинга новостей v.1.14")
with gr.Row():
file_input = gr.File(
label="Загрузите Excel файл",
file_types=[".xlsx"],
type="binary"
)
with gr.Row():
with gr.Column(scale=1):
analyze_btn = gr.Button(
"▶️ Начать анализ",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
stop_btn = gr.Button(
"⏹️ Остановить",
variant="stop",
size="lg"
)
with gr.Row():
progress = gr.Textbox(
label="Статус обработки",
interactive=False,
value="Ожидание файла..."
)
with gr.Row():
stats = gr.DataFrame(
label="Результаты анализа",
interactive=False,
wrap=True
)
with gr.Row():
with gr.Column(scale=1):
sentiment_plot = gr.Plot(label="Распределение тональности")
with gr.Column(scale=1):
events_plot = gr.Plot(label="Распределение событий")
def stop_processing():
control.request_stop()
return "Остановка обработки..."
def analyze(file_bytes):
if file_bytes is None:
gr.Warning("Пожалуйста, загрузите файл")
return None, None, None, "Ожидание файла..."
try:
# Reset stop flag
control.reset()
file_obj = io.BytesIO(file_bytes)
logger.info("File loaded into BytesIO successfully")
progress_status = "Начинаем обработку файла..."
yield None, None, None, progress_status
# Process file
df = pd.read_excel(file_obj, sheet_name='Публикации')
logger.info(f"Successfully read Excel file. Shape: {df.shape}")
# Deduplication
original_count = len(df)
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55)
logger.info(f"Removed {original_count - len(df)} duplicate entries")
detector = EventDetector()
detector.control = control # Pass control object
processed_rows = []
total = len(df)
# Initialize models
if not detector.initialize_models():
raise Exception("Failed to initialize models")
for idx, row in df.iterrows():
if control.should_stop():
yield (
pd.DataFrame(processed_rows) if processed_rows else None,
None, None,
f"Обработка остановлена. Обработано {idx} из {total} строк"
)
return
try:
text = str(row.get('Выдержки из текста', ''))
if not text.strip():
continue
entity = str(row.get('Объект', ''))
if not entity.strip():
continue
event_type, event_summary = detector.detect_events(text, entity)
sentiment = detector.analyze_sentiment(text)
processed_rows.append({
'Объект': entity,
'Заголовок': str(row.get('Заголовок', '')),
'Sentiment': sentiment,
'Event_Type': event_type,
'Event_Summary': event_summary,
'Текст': text[:1000]
})
if idx % 5 == 0:
progress_status = f"Обработано {idx + 1}/{total} строк"
yield None, None, None, progress_status
except Exception as e:
logger.error(f"Error processing row {idx}: {str(e)}")
continue
result_df = pd.DataFrame(processed_rows)
fig_sentiment, fig_events = create_visualizations(result_df)
return (
result_df,
fig_sentiment,
fig_events,
f"Обработка завершена успешно! Обработано {len(result_df)} строк"
)
except Exception as e:
error_msg = f"Ошибка анализа: {str(e)}"
logger.error(error_msg)
gr.Error(error_msg)
return None, None, None, error_msg
stop_btn.click(fn=stop_processing, outputs=[progress])
analyze_btn.click(
fn=analyze,
inputs=[file_input],
outputs=[stats, sentiment_plot, events_plot, progress]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(share=True) |