peachfawn's picture
Update app.py
4d79a3d verified
# -*- coding: utf-8 -*-
"""inclusion and exclusion criteria creation
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1c9JSnTukGHH0nC2U6pwEpc8T6LgGTJC6
"""
import gradio as gr
import re
import torch
import re
import spacy
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel, AutoConfig, AutoModelForCausalLM, TextStreamer
from sklearn.metrics.pairwise import cosine_similarity
from fuzzywuzzy import fuzz, process
from pyvis.network import Network
from math import radians, cos, sin
# Load your fine-tuned model from Hugging Face
# model_name = "peachfawn/llama3ClinicalTrialFinalFineTuned"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") # Move to CUDA
"""# Clinical Trials Web Scrapper
## Description
The Web Scrapper uses Gradio and Selenium to retrieve and process clinical trial data. It integrates an LLM model for generating inclusion and exclusion criteria based on study objectives.
### Key Features
- **Data Retrieval**: Fetches clinical trials data based on user-specified filters (condition, age, gender, phase, etc.).
- **Dynamic Download**: Downloads JSON and CSV formats for trial data and appends new data to an existing Excel file.
- **LLM Integration**: Uses a fine-tuned model to generate inclusion and exclusion criteria from study objectives.
- **User Interface**: A Gradio interface enables user inputs and shows generated criteria.
### Requirements
- **Libraries**: `gradio`, `selenium`, `pandas`, and `transformers`.
- **Gradio Interface**: A multi-step UI that allows filtering, downloading, and criteria generation.
"""
import gradio as gr
import os
import time
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
# Initialize an empty global variable to store extracted data
clinical_trials_data = []
# Mapping for filter values to their corresponding URL parameters
status_mapping_DB = {
"Not yet recruiting": "not",
"Recruiting": "rec",
"Active, not recruiting": "act",
"Completed": "com",
"Terminated": "ter",
"Enrolling by invitation": "enr",
"Suspended": "sus",
"Withdrawn": "wit",
"Unknown": "unk"
}
# Mapping for age values to their corresponding URL parameters
age_mapping_DB = {
"Child (birth - 17)": "child",
"Adult (18 - 64)": "adult",
"Older adult (65+)": "older"
}
# Mapping for gender values to their corresponding URL parameters
sex_mapping_DB = {
"All": "all",
"Female": "f",
"Male": "m"
}
# Mapping for study phase values to their corresponding URL parameters
phase_mapping_DB = {
"Early Phase 1": "0",
"Phase 1": "1",
"Phase 2": "2",
"Phase 3": "3",
"Phase 4": "4",
"Not applicable": "NA"
}
study_type_mapping_DB = {
"Interventional": "int",
"Observational": "obs",
"Patient registries": "obs_patreg",
"Expanded access": "exp",
"Individual patients": "exp_indiv",
"Intermediate-size population": "exp_inter",
"Treatment IND/Protocol": "exp_treat"
}
results_mapping_DB = {
"With results": "with",
"Without results": "without"
}
docs_mapping_DB = {
"Study protocols": "prot",
"Statistical analysis plans": "sap",
"Informed consent forms": "icf"
}
funder_type_mapping_DB = {
"NIH": "nih",
"Other U.S. federal agency": "fed",
"Industry": "industry",
"All others (individuals, universities, organizations)": "other"
}
# Set up Selenium driver
def setup_driver(download_dir):
chrome_options = webdriver.ChromeOptions()
prefs = {
"download.default_directory": download_dir,
"download.prompt_for_download": False,
"download.directory_upgrade": True,
"safebrowsing.enabled": True
}
chrome_options.add_experimental_option("prefs", prefs)
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
return webdriver.Chrome(options=chrome_options)
# Retry logic for clicks
def safe_click(driver, by, selector, retries=3, delay=2):
for attempt in range(retries):
try:
element = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((by, selector)))
driver.execute_script("arguments[0].scrollIntoView(true);", element)
time.sleep(1) # Short delay after scrolling
element.click()
print(f"Clicked element {selector} on attempt {attempt + 1}")
return True
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
time.sleep(delay)
print(f"Failed to click element {selector} after {retries} retries.")
return False
# Download JSON file
def download_json_from_link(url):
project_dir = os.getcwd()
download_dir = os.path.join(project_dir, "downloads")
os.makedirs(download_dir, exist_ok=True)
driver = setup_driver(download_dir)
try:
driver.get(url)
open_modal_button = WebDriverWait(driver, 10).until(
EC.element_to_be_clickable((By.CLASS_NAME, "action-bar-button"))
)
open_modal_button.click()
print("Modal opened.")
json_option = WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.ID, "download-format-json"))
)
time.sleep(1) # Short delay to ensure stability
driver.execute_script("arguments[0].click();", json_option)
print("JSON format selected.")
download_button = WebDriverWait(driver, 10).until(
EC.element_to_be_clickable((By.CLASS_NAME, "primary-button"))
)
driver.execute_script("arguments[0].click();", download_button)
print("Download initiated.")
time.sleep(15) # Adjust based on download speed
downloaded_file_path = os.path.join(download_dir, "ctg-studies.json")
if os.path.exists(downloaded_file_path):
print(f"Found downloaded file: {downloaded_file_path}")
else:
print("Error: ctg-studies.json not found.")
except Exception as e:
print(f"Error: {e}")
finally:
driver.quit()
print("Browser closed.")
# Download CSV file
def download_csv_from_link(url):
new_rows = 0
project_dir = os.getcwd()
download_dir = os.path.join(project_dir, "downloads")
os.makedirs(download_dir, exist_ok=True)
driver = setup_driver(download_dir)
try:
driver.get(url)
if not safe_click(driver, By.CLASS_NAME, "action-bar-button"):
print("Failed to open modal for CSV.")
return
print("Modal opened for CSV.")
if not safe_click(driver, By.XPATH, "//button[contains(text(), 'Select all')]"):
print("Failed to select all fields for CSV.")
return
print("All fields selected for CSV.")
if not safe_click(driver, By.CLASS_NAME, "primary-button"):
print("Failed to initiate CSV download.")
return
print("Download initiated for CSV.")
time.sleep(15) # Adjust based on download speed
downloaded_file_path = os.path.join(download_dir, "ctg-studies.csv")
if os.path.exists(downloaded_file_path):
print(f"Found downloaded CSV file: {downloaded_file_path}")
print_file_contents(downloaded_file_path)
new_rows = append_to_excel(downloaded_file_path)
delete_file(downloaded_file_path)
else:
print("Error: CSV file not found.")
return new_rows
except Exception as e:
print(f"Error downloading CSV: {e}")
finally:
driver.quit()
print("Browser closed after CSV download.")
# Print file contents
def print_file_contents(file_path):
try:
data = pd.read_csv(file_path, encoding='utf-8')
print(f"Loaded data from {file_path}. Shape: {data.shape}")
print(data.head())
except Exception as e:
print(f"Error reading {file_path}: {e}")
# Append data to Excel file
def append_to_excel(new_file, main_file="clinical_trials_data_better_other.xlsx"):
try:
new_data = pd.read_csv(new_file, encoding='utf-8')
print(f"New data shape: {new_data.shape}")
if os.path.exists(main_file):
main_data = pd.read_excel(main_file)
print(f"Existing data shape: {main_data.shape}")
combined_data = pd.concat([main_data, new_data])
combined_data.drop_duplicates(subset=['NCT Number'], inplace=True)
new_rows_count = combined_data.shape[0] - main_data.shape[0]
print(f"Combined data shape after removing duplicates: {combined_data.shape}")
else:
print(f"{main_file} does not exist. Creating it.")
combined_data = new_data
new_rows_count = combined_data.shape[0] # All rows are new
combined_data.to_excel(main_file, index=False)
print(f"Data successfully saved to {main_file}.")
return new_rows_count
except pd.errors.EmptyDataError:
print(f"Error: {new_file} is empty or unreadable.")
except Exception as e:
print(f"Unexpected error: {e}")
# Delete file after processing
def delete_file(file_path):
try:
os.remove(file_path)
print(f"Deleted file: {file_path}")
except Exception as e:
print(f"Error deleting {file_path}: {e}")
def update_clinical_trials_with_json(json_file="/content/downloads/ctg-studies.json",
excel_file="clinical_trials_data_better_other.xlsx"):
try:
with open(json_file, 'r', encoding='utf-8') as f:
json_data = json.load(f)
print(f"Loaded JSON data from {json_file}.")
# Prepare data from JSON
new_entries = []
for trial in json_data:
nct_id = trial["protocolSection"]["identificationModule"].get("nctId")
detailed_description = trial["protocolSection"]["descriptionModule"].get("detailedDescription", "")
eligibility_criteria = trial["protocolSection"]["eligibilityModule"].get("eligibilityCriteria", "")
new_entries.append({
"NCT Number": nct_id,
"detailedDescription": detailed_description,
"eligibilityCriteria": eligibility_criteria
})
new_df = pd.DataFrame(new_entries)
# Check if the Excel file exists
if not os.path.exists(excel_file):
# If the file does not exist, save new_df as the initial data and return
new_df.to_excel(excel_file, index=False)
print(f"File {excel_file} created with initial data.")
return
# Load existing data
df = pd.read_excel(excel_file)
print(f"Loaded existing Excel data. Shape: {df.shape}")
# Merge existing data with new data on 'NCT Number', keeping all data
updated_df = pd.merge(df, new_df, on="NCT Number", how="outer", suffixes=('', '_new'))
# Update columns only where they are currently empty in the original data
if 'detailedDescription' in updated_df.columns and 'detailedDescription_new' in updated_df.columns:
updated_df['detailedDescription'] = updated_df['detailedDescription'].fillna(updated_df['detailedDescription_new'])
if 'eligibilityCriteria' in updated_df.columns and 'eligibilityCriteria_new' in updated_df.columns:
updated_df['eligibilityCriteria'] = updated_df['eligibilityCriteria'].fillna(updated_df['eligibilityCriteria_new'])
# Drop the '_new' columns after filling in the missing values
updated_df.drop(columns=['detailedDescription_new', 'eligibilityCriteria_new'], inplace=True, errors='ignore')
# Save the updated DataFrame back to the Excel file
updated_df.to_excel(excel_file, index=False)
print(f"Data successfully updated and saved to {excel_file}.")
except Exception as e:
print(f"Error updating Excel with JSON: {e}")
# Main function for Gradio
def process_page(condition, term, treatment, filters, age_ranges, sex, phases, study_types, results, docs, funder_type, numberOfTrialsPerBatch):
filter_query = ''
filter_parts = []
if filters:
filter_parts.append('status:' + ' '.join([status_mapping_DB[f] for f in filters if f in status_mapping_DB]))
if age_ranges:
filter_parts.append('ages:' + ' '.join([age_mapping_DB[a] for a in age_ranges if a in age_mapping_DB]))
if sex in ['Male', 'Female']:
filter_parts.append('sex:' + sex_mapping_DB[sex])
if phases:
filter_parts.append('phase:' + ' '.join([phase_mapping_DB[p] for p in phases if p in phase_mapping_DB]))
if study_types:
filter_parts.append('studyType:' + ' '.join([study_type_mapping_DB.get(st, st) for st in study_types]))
if results:
filter_parts.append('results:' + ' '.join([results_mapping_DB.get(r, r) for r in results]))
if docs:
filter_parts.append('docs:' + ' '.join([docs_mapping_DB.get(d, d) for d in docs]))
if funder_type:
filter_parts.append('funderType:' + ' '.join([funder_type_mapping_DB.get(f, f) for f in funder_type]))
if filter_parts:
filter_query = f"&aggFilters=" + ','.join(filter_parts)
url = f"https://clinicaltrials.gov/search?cond={condition}&term={term}&intr={treatment}&limit=100{filter_query}"
print(f"Constructed URL: {url}")
download_json_from_link(url)
new_rows = download_csv_from_link(url)
update_clinical_trials_with_json()
delete_file("/content/downloads/ctg-studies.json")
return new_rows, gr.update(visible=True)
#--------------------------------------------------------------------------------------------------
# Define a function to generate inclusion and exclusion criteria
def generate_output(user_input, model, tokenizer):
# Define the Alpaca prompt format
alpaca_prompt = """Below is a study objective that describes a clinical trial. Write an inclusion and exclusion criteria based on the given study objective.
### Study Objective:
{}
### Response (Inclusion and Exclusion Criteria):
{}"""
# Prepare the input for the model
inputs = tokenizer(
[
alpaca_prompt.format(
user_input, # The input from the eligibilityCriteria
"" # Leave the response section blank for now
)
],
return_tensors="pt"
).to("cuda")
# Use a text streamer to capture the output
text_streamer = TextStreamer(tokenizer)
# Generate text
generated_output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=2000)
# Return the generated text
output_text = tokenizer.decode(generated_output[0], skip_special_tokens=True)
return output_text
# Process eligibility criteria based on column presence
def process_eligibility_criteria():
# Load the model and tokenizer
file_path = "/content/clinical_trials_data_better_other.xlsx"
# Load the Excel file
df = pd.read_excel(file_path)
# Determine if this is a new file (i.e., no 'Inclusion' or 'Exclusion' columns)
is_new_file = 'Inclusion' not in df.columns or 'Exclusion' not in df.columns
# Process all rows if this is a new file
if is_new_file:
df['Inclusion'] = pd.NA
df['Exclusion'] = pd.NA
data_to_process = df # Process all rows for new files
else:
# Process only rows where 'Inclusion' or 'Exclusion' is empty
data_to_process = df[df['Inclusion'].isna() | df['Exclusion'].isna()]
for idx, row in data_to_process.iterrows():
try:
generated_text = generate_output(row['eligibilityCriteria'], model, tokenizer)
inclusion_start = generated_text.find("Inclusion:") + len("Inclusion:")
exclusion_start = generated_text.find("Exclusion:")
inclusion_criteria = generated_text[inclusion_start:exclusion_start].strip()
exclusion_criteria = generated_text[exclusion_start + len("Exclusion:"):].strip()
df.at[idx, 'Inclusion'] = inclusion_criteria
df.at[idx, 'Exclusion'] = exclusion_criteria
except Exception as e:
print(f"Error processing row with ID {row['NCT Number']}: {e}")
df.at[idx, 'Inclusion'] = "N/A"
df.at[idx, 'Exclusion'] = "N/A"
# Save the updated DataFrame back to the file
df.to_excel(file_path, index=False)
print(f"\nAll required rows processed! Updated file saved to {file_path}")
"""*query data"""
import pandas as pd
# Load the Excel file
df = pd.read_excel('Clinical_trial_DB_with_embeddings.xlsx')
# # Function to query the data based on extracted keywords
# def query_data(extracted_params):
# filtered_df = df # Start with the entire DataFrame
# # Apply study status filter
# if extracted_params['status']:
# status_pattern = '|'.join(extracted_params['status'])
# filtered_df = filtered_df[filtered_df['Study Status'].str.contains(status_pattern, case=False, na=False)]
# # Apply age ranges filter
# if extracted_params['age_ranges']:
# age_pattern = '|'.join(extracted_params['age_ranges'])
# filtered_df = filtered_df[filtered_df['Age'].str.contains(age_pattern, case=False, na=False)]
# # Apply sex filter
# if extracted_params['sex']:
# filtered_df = filtered_df[filtered_df['Sex'].str.contains(extracted_params['sex'], case=False, na=False)]
# # Apply phases filter
# if extracted_params['phases']:
# phases_pattern = '|'.join(extracted_params['phases'])
# filtered_df = filtered_df[filtered_df['Phases'].str.contains(phases_pattern, case=False, na=False)]
# return filtered_df
from fuzzywuzzy import fuzz
import pandas as pd
def query_data(extracted_params, text):
filtered_df = df.copy() # Start with the entire DataFrame
# Apply study status filter
if extracted_params['status']:
status_pattern = '|'.join(extracted_params['status'])
filtered_df = filtered_df[filtered_df['Study Status'].str.contains(status_pattern, case=False, na=False)]
# Apply age ranges filter
if extracted_params['age_ranges']:
age_pattern = '|'.join(extracted_params['age_ranges'])
filtered_df = filtered_df[filtered_df['Age'].str.contains(age_pattern, case=False, na=False)]
# Apply sex filter
if extracted_params['sex']:
filtered_df = filtered_df[filtered_df['Sex'].str.contains(extracted_params['sex'], case=False, na=False)]
# Apply phases filter
if extracted_params['phases']:
phases_pattern = '|'.join(extracted_params['phases'])
filtered_df = filtered_df[filtered_df['Phases'].str.contains(phases_pattern, case=False, na=False)]
# Extract conditions from the text
conditions = extract_conditions(text) # Extract the phrase (e.g., ["brain cancer"])
# Ensure conditions is not empty and is a list
if conditions and isinstance(conditions, list):
# Check if "glioma" exists in the list and is not at index 0
if "glioma" in conditions and conditions[0] != "glioma":
# Remove "glioma" from its current position
conditions.remove("glioma")
# Insert "glioma" at index 0
conditions.insert(0, "glioma")
print(f"The conditions before the query IS IS IS -----> {conditions}")
# Apply substring matching on "Brief Summary"
if conditions and not filtered_df.empty:
search_condition = str(conditions[0]).lower().strip()
# Normalize "Brief Summary" column
filtered_df['Brief Summary'] = filtered_df['Brief Summary'].fillna("").str.lower()
# Check for substring matches
brief_summary_matches = []
for index, row in filtered_df.iterrows():
brief_summary = row['Brief Summary']
if search_condition in brief_summary: # Substring match
brief_summary_matches.append(index)
else:
# Fallback: Partial fuzzy matching for close matches
match_score = fuzz.partial_ratio(search_condition, brief_summary)
if match_score >= 70:
brief_summary_matches.append(index)
# Filter the DataFrame to only include rows with matching indices
filtered_df = filtered_df.loc[brief_summary_matches]
return filtered_df
def extract_from_excel_by_ids(ids):
"""
Extract rows from an Excel file that match a given list of IDs.
Args:
ids (list): List of Clinical Trial IDs to filter the data by.
Returns:
pd.DataFrame: Filtered DataFrame containing only rows that match the provided IDs.
"""
# Load the Excel data
df = pd.read_excel("Clinical_trial_DB_with_embeddings.xlsx")
# Filter the DataFrame by IDs
filtered_df = df[df['NCT Number'].isin(ids)]
return filtered_df
"""LLAMA 3 MODEL"""
"""# Clinical Criteria Conflict Detection
## Description
This script uses Clinical BERT to detect conflicts between user-defined inclusion/exclusion criteria and clinical trial criteria. It leverages text embedding and cosine similarity to identify potential conflicts, particularly relevant in clinical trials for patient eligibility assessment.
### Key Features
- **Model Loading**: Loads Bio_ClinicalBERT to create text embeddings for criteria comparison.
- **Data Cleaning**: Cleans criteria lists by removing special characters.
- **Conflict Detection**: Checks for conflicts between user and trial criteria, excluding age-based items, using cosine similarity for accuracy.
### Requirements
- **Libraries**: `transformers`, `torch`, `sklearn`, and `re` for text processing and similarity calculations.
- **Criteria Check**: Prints detected conflicts with a similarity threshold of 0.85 to highlight potential eligibility mismatches.
"""
class MedicalNER:
def __init__(self):
# Load Clinical BERT tokenizer and model for disease extraction (NER)
disease_model_name = 'emilyalsentzer/Bio_ClinicalBERT'
self.disease_tokenizer = AutoTokenizer.from_pretrained(disease_model_name)
self.disease_model = AutoModelForTokenClassification.from_pretrained("alvaroalon2/biobert_diseases_ner")
# Load a second model for age and gender extraction (Biomedical NER)
age_gender_model_name = 'd4data/biomedical-ner-all' # Model trained for biomedical NER
self.age_gender_tokenizer = AutoTokenizer.from_pretrained(age_gender_model_name)
self.age_gender_model = AutoModelForTokenClassification.from_pretrained(age_gender_model_name)
# Load Clinical BERT model for sentence embeddings
embedding_model_name = 'emilyalsentzer/Bio_ClinicalBERT'
self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name)
self.embedding_model = AutoModel.from_pretrained(embedding_model_name)
# Create pipelines
self.disease_pipeline = pipeline("ner", model=self.disease_model, tokenizer=self.disease_tokenizer)
self.age_gender_pipeline = pipeline("ner", model=self.age_gender_model, tokenizer=self.age_gender_tokenizer)
# Method to extract age and gender entities
def extract_age_gender(self, text):
age_gender_entities = self.age_gender_pipeline(text)
return age_gender_entities
# Method to dynamically convert descriptors like "twenties" or "thirties" to an age range
def descriptor_to_age_range(self, descriptor):
base_age = {"twenties": 20, "thirties": 30, "forties": 40, "fifties": 50, "sixties": 60, "seventies": 70, "eighties": 80, "nineties": 90}
if descriptor in base_age:
start_age = base_age[descriptor]
end_age = start_age + 9
return f"{start_age}-{end_age}"
return None
# Method to merge tokens like "late thirties" and extract age
def extract_age_from_entities(self, entities, text):
age = None
for i, entity in enumerate(entities):
if entity['entity'] == 'B-Age': # Found the start of an age entity
age = entity['word']
if i + 1 < len(entities) and entities[i + 1]['entity'] == 'I-Age':
age += " " + entities[i + 1]['word']
if not age:
# Check for numerical ages or descriptive ages like "late thirties"
age_match = re.search(r'\b(?:at|age|am|turning|around|about)\s*(\d+)\b', text, re.IGNORECASE)
if age_match:
age = age_match.group(1)
else:
# Corrected the regex to ensure both groups are captured properly
age_range_match = re.search(r'\b(early|mid|late)\s*(twenties|thirties|forties|fifties|sixties|seventies|eighties|nineties)\b', text, re.IGNORECASE)
if age_range_match:
# Ensure both groups are captured
descriptor = age_range_match.group(2).lower() if age_range_match.group(2) else None
if descriptor:
age_range = self.descriptor_to_age_range(descriptor)
if age_range:
if "early" in age_range_match.group(1).lower():
age = age_range.split('-')[0] # e.g., "30" for early thirties
elif "mid" in age_range_match.group(1).lower():
start, end = map(int, age_range.split('-'))
age = f"{start+2}-{end-2}" # e.g., "32-37" for mid-thirties
elif "late" in age_range_match.group(1).lower():
age = age_range.split('-')[1] # e.g., "39" for late thirties
return age
# Function to merge subword tokens back into full words and combine consecutive tokens
def merge_subwords_and_conditions(self, entities):
merged = []
current_phrase = ""
for entity in entities:
word = entity['word']
if word.startswith("##"):
current_phrase += word[2:] # Append subword without ##
else:
if current_phrase:
merged[-1] += current_phrase # Append the subword to the last word
current_phrase = ""
if len(merged) > 0 and entity['entity'] == 'I-DISEASE':
merged[-1] += " " + word # Merge consecutive disease tokens
else:
merged.append(word) # Start a new word/phrase
if current_phrase:
merged[-1] += current_phrase
return merged
# Method to remove exact and similar duplicates from a list of conditions
def remove_duplicates(self, conditions):
# Using a set to remove exact duplicates and retain unique conditions
unique_conditions = set(conditions)
cleaned_conditions = []
for condition in unique_conditions:
is_substring = False
for other_condition in unique_conditions:
if condition != other_condition and condition in other_condition:
is_substring = True
break
if not is_substring:
cleaned_conditions.append(condition)
return cleaned_conditions
# Method to extract conditions, treatments, age, and gender from text
def extract_info(self, text):
# Extract disease-related entities
disease_entities = self.disease_pipeline(text)
condition = []
treatment = []
for entity in disease_entities:
if entity['entity'] == 'B-DISEASE' or entity['entity'] == 'I-DISEASE':
condition.append(entity)
elif entity['entity'] == 'B-TREATMENT':
treatment.append(entity['word'])
# Extract age and gender using second model
age_gender_entities = self.extract_age_gender(text)
age = self.extract_age_from_entities(age_gender_entities, text)
sex = None
for entity in age_gender_entities:
if entity['entity'] == 'B-Sex':
sex = entity['word']
# Merge and clean condition entities
condition_words = self.merge_subwords_and_conditions(condition)
unique_conditions = self.remove_duplicates(condition_words)
return {
"Condition": unique_conditions,
"Treatment": treatment,
"Age": age,
"Sex": sex
}
# Method to compute sentence embeddings for a given condition
def get_sentence_embedding(self, condition):
inputs = self.embedding_tokenizer(condition, return_tensors='pt', truncation=True, max_length=128)
outputs = self.embedding_model(**inputs)
# Take the mean of the last hidden state to create a fixed-size vector
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings
# Method to compute cosine similarity between two conditions
def compute_similarity(self, condition1, condition2):
embedding1 = self.get_sentence_embedding(condition1)
embedding2 = self.get_sentence_embedding(condition2)
similarity = cosine_similarity(embedding1.detach().numpy(), embedding2.detach().numpy())
return similarity[0][0]
# Method to compare conditions between two texts
def compare_conditions(self, text1, text2):
conditions_text1 = self.extract_info(text1)["Condition"]
conditions_text2 = self.extract_info(text2)["Condition"]
if not conditions_text1 or not conditions_text2:
print("No conditions extracted in one or both texts.")
return {
"Unmatched Conditions in Text 2": [],
"Conditions in Text 1": conditions_text1,
"Conditions in Text 2": conditions_text2
}
unmatched_conditions = []
for condition2 in conditions_text2:
found_match = False
for condition1 in conditions_text1:
similarity_score = self.compute_similarity(condition1, condition2)
if similarity_score > 0.95: # Threshold for similarity
found_match = True
break
if not found_match:
unmatched_conditions.append(condition2)
return {
"Unmatched Conditions in Text 2": unmatched_conditions,
"Conditions in Text 1": conditions_text1,
"Conditions in Text 2": conditions_text2
}
# Instantiate the MedicalNER class
ner = MedicalNER()
print(ner.compare_conditions("i am a male with coronary artery disease" , "The objective of our work to determine the mechanisms of myocardial infarction in women without obstructive coronary artery disease."))
# Define a function that extracts conditions from text
def extract_conditions(text):
# Run extract_info and get the "Condition" only
result = ner.extract_info(text)
conditions = result["Condition"]
return conditions
"""# Enhanced Criteria Extraction and Matching
## Description
This script utilizes spaCy for NLP processing to detect and map keywords related to clinical trial criteria. It includes updated mappings for statuses, age groups, gender, and trial phases. Using keyword and fuzzy matching, the script can accurately detect eligibility criteria for clinical trials based on text input.
### Key Features
- **Model Loading**: Loads spaCy for text preprocessing and matching functions.
- **Keyword Mapping**: Direct and fuzzy matching for trial statuses, age groups, gender, and phases.
- **Age and Gender Detection**: Uses regex patterns to identify age ranges and gender in text.
- **Preprocessing**: Text is cleaned for uniform matching, supporting efficient keyword extraction.
### Requirements
- **Libraries**: `spacy`, `re`, and `fuzzywuzzy` for text processing and similarity matching.
- **Criteria Check**: Maps text inputs to predefined categories for trial criteria, enhancing eligibility filtering.
"""
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
# Updated core keywords for filters
status_mapping = {
"Not yet recruiting": "NOT_YET_RECRUITING",
"Recruiting": "RECRUITING",
"Active, not recruiting": "ACTIVE",
"Completed": "COMPLETED",
"Terminated": "TERMINATED",
"Enrolling by invitation": "ENROLLING_BY_INVITATION",
"Suspended": "SUSPENDED",
"Withdrawn": "WITHDRAWN",
"Unknown": "UNKNOWN"
}
age_mapping = {
"Child (birth - 17)": "CHILD",
"Adult (18 - 64)": "ADULT",
"Older adult (65+)": "OLDER_ADULT"
}
sex_mapping = {
"All": "ALL",
"Female": "FEMALE",
"Male": "MALE"
}
phase_mapping = {
"Early Phase 1": "Early_Phase1",
"Phase 1": "PHASE1",
"Phase 2": "PHASE2",
"Phase 3": "PHASE3",
"Phase 4": "PHASE4",
"Not applicable": "NOT_APPLICABLE"
}
# Preprocessing text
def preprocess_text(text):
text = text.lower()
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[^\w\s]', '', text)
return text
# Keyword matching functions to return mapped values directly
def match_keywords(text, keyword_mapping):
matches = []
for key, value in keyword_mapping.items():
if key.lower() in text:
matches.append(value) # Return the mapped value directly
return matches
def fuzzy_match_keywords(text, keyword_mapping, threshold=80):
matches = []
for key, value in keyword_mapping.items():
best_match = process.extractOne(text, [key], scorer=fuzz.partial_ratio)
if best_match and best_match[1] >= threshold:
matches.append(value) # Return the mapped value directly
return matches
# Detect age ranges based on new mappings
def detect_age_ranges(text):
detected_ages = set()
if re.search(r'\bchild(ren)?\b|\bkid(s)?\b|\bteen(ager)?\b', text):
detected_ages.add("CHILD")
if re.search(r'\bolder adult(s)?\b|\b65 and older\b|\bover 65\b|\babove 65\b', text):
detected_ages.add("OLDER_ADULT")
elif re.search(r'\badult(s)?\b|\b18 to 65\b|\bbetween 18 and 65\b', text):
detected_ages.add("ADULT")
if "all ages" in text:
detected_ages.update(["CHILD", "ADULT", "OLDER_ADULT"])
# Match numeric age ranges and categorize accordingly
ages = re.findall(r'\b\d{1,2}\b', text)
for age in ages:
age = int(age)
if age < 18:
detected_ages.add("CHILD")
elif 19 <= age <= 64:
detected_ages.add("ADULT")
elif age > 64:
detected_ages.add("OLDER_ADULT")
return list(detected_ages)
# Detect gender with new mappings
def detect_gender(text):
detected_genders = []
if "female" in text:
detected_genders.append(sex_mapping["Female"])
if "male" in text:
detected_genders.append(sex_mapping["Male"])
if "all genders" in text or "all sexes" in text:
return sex_mapping["All"]
return detected_genders[0] if detected_genders else None
# Status matching
def match_status(text):
status_matches = match_keywords(text, status_mapping)
if not status_matches:
status_matches = fuzzy_match_keywords(text, status_mapping, threshold=80)
return status_matches
# Main function with improved matching logic
def extract_keywords_with_fuzzy_and_direct(text):
text = preprocess_text(text)
extracted_params = {
'status': [],
'age_ranges': [],
'sex': None,
'phases': [],
}
# Handle all-ages or all-phases cases
if "all ages" in text:
extracted_params['age_ranges'] = list(age_mapping.values())
if "all phases" in text:
extracted_params['phases'] = list(phase_mapping.values())
# Extract status
extracted_params['status'] = match_status(text)
# Extract age ranges
detected_ages = detect_age_ranges(text)
extracted_params['age_ranges'] = [value for key, value in age_mapping.items() if value in detected_ages]
# Extract gender
extracted_params['sex'] = detect_gender(text)
# Extract phases
if not extracted_params['phases']:
phase_matches = match_keywords(text, phase_mapping)
if not phase_matches:
phase_matches = fuzzy_match_keywords(text, phase_mapping)
extracted_params['phases'] = list(set(phase_matches))
# Remove "PHASE1" if "Early_Phase1" exists
if "Early_Phase1" in extracted_params['phases'] and "PHASE1" in extracted_params['phases']:
extracted_params['phases'].remove("PHASE1")
return extracted_params
# # Sample usage
# sample_texts = [
# "This study is for phase 1 and is curretnly not yet recurting",
# ]
# for text in sample_texts:
# extracted_params = extract_keywords_with_fuzzy_and_direct(text)
# print("Extracted Parameters:")
# print(extracted_params)
# print()
# Set up the Gradio interface
"""# Clinical Criteria Conflict Detection
## Description
This script uses Clinical BERT to detect conflicts between user-defined inclusion/exclusion criteria and clinical trial criteria. It leverages text embedding and cosine similarity to identify potential conflicts, particularly relevant in clinical trials for patient eligibility assessment.
### Key Features
- **Model Loading**: Loads Bio_ClinicalBERT to create text embeddings for criteria comparison.
- **Data Cleaning**: Cleans criteria lists by removing special characters.
- **Conflict Detection**: Checks for conflicts between user and trial criteria, excluding age-based items, using cosine similarity for accuracy.
### Requirements
- **Libraries**: `transformers`, `torch`, `sklearn`, and `re` for text processing and similarity calculations.
- **Criteria Check**: Prints detected conflicts with a similarity threshold of 0.85 to highlight potential eligibility mismatches.
"""
from transformers import AutoTokenizer, AutoModel
import torch
from sklearn.metrics.pairwise import cosine_similarity
import re
# Load Clinical BERT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
# Function to clean the list
def clean_list(criteria_list):
pattern = r"[^a-zA-Z0-9\s?,.!-]"
return [re.sub(pattern, '', item) for item in criteria_list]
# Function to embed text
def embed_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze()
return embeddings.numpy()
# Basic similarity function for simple comparison
def calculate_similarity(item1, item2):
item1_embedding = embed_text(item1)
item2_embedding = embed_text(item2)
similarity = cosine_similarity([item1_embedding], [item2_embedding])[0][0]
return similarity
# Function to check conflict between user inclusion and trial exclusion criteria
def check_inclusion_exclusion_conflict(user_inclusion, trial_exclusion):
for user_item in user_inclusion:
for trial_item in trial_exclusion:
# Skip items containing 'age' or 'years old'
if "age" in user_item.lower() or "years old" in user_item.lower():
continue
similarity = calculate_similarity(user_item, trial_item)
if similarity > 0.85: # Using a basic threshold to decide a conflict
print(f"Conflict detected between User Inclusion '{user_item}' and Trial Exclusion '{trial_item}' | Similarity: {similarity:.2f}")
return True
return False
# Function to check conflict between user exclusion and trial inclusion criteria
def check_exclusion_inclusion_conflict(user_exclusion, trial_inclusion):
for user_item in user_exclusion:
for trial_item in trial_inclusion:
# Skip items containing 'age' or 'years old'
if "age" in user_item.lower() or "years old" in user_item.lower():
continue
similarity = calculate_similarity(user_item, trial_item)
if similarity > 0.85: # Using a basic threshold to decide a conflict
print(f"Conflict detected between User Exclusion '{user_item}' and Trial Inclusion '{trial_item}' | Similarity: {similarity:.2f}")
return True
return False
# Example criteria
user_inclusion = ["18 years old", "type 2 diabetes", "heart failure"]
trial_inclusion = ['* ST- segment elevation patients.', '* Patients who are candidate for add-on treatment with Mineralocorticoid receptor antagonists (MRAs) to improve cardiac remodeling.', '* Age of 18 years to 80 years.', '* Written informed consent of the subject to participate in the study.']
trial_exclusion = ['* Contraindications to Mineralocorticoid receptor antagonists (MRA) including: serum potassium \\>5.5 mEq/L at initiation; CrCl Ò‰€30 mL/minute; concomitant use of strong CYP3A4 inhibitors; concomitant use with potassium supplements or potassium-sparing diuretics.', '* Mild-to-severe valvular stenosis or severe (grade III/IV) valvular regurgitation', '* Pregnant or nursing women.', "* Non cardiac disorders associated with increased growth factor (e.g., HIV, Alzheimer, Crohn's disease, Cancer, glomerulonephritis, glomerulosclerosis, diabetic nephropathy, muscle atrophy, fibrotic conditions and burns).", '* Patients with chronic heart failure with reduced ejection fraction (LVEF \\<40%).']
user_exclusion = ["smoker", "history of cancer", "don't want Mineralocorticoid", "does not want too sign or write any consent form"]
# Clean criteria lists
trial_inclusion = clean_list(trial_inclusion)
trial_exclusion = clean_list(trial_exclusion)
user_inclusion = clean_list(user_inclusion)
user_exclusion = clean_list(user_exclusion)
# Check for conflicts
inclusion_exclusion_conflict = check_inclusion_exclusion_conflict(user_inclusion, trial_exclusion)
exclusion_inclusion_conflict = check_exclusion_inclusion_conflict(user_exclusion, trial_inclusion)
# Output results
print(f"Inclusion-Exclusion Conflict Detected: {inclusion_exclusion_conflict}")
print(f"Exclusion-Inclusion Conflict Detected: {exclusion_inclusion_conflict}")
"""# Clinical Criteria Similarity and Disease Detection
## Description
This script leverages Clinical BERT for text embeddings and BioBERT for disease recognition to assess similarities between user and trial criteria. By identifying disease terms and applying weight adjustments, it enhances the accuracy of similarity scores between inclusion and exclusion criteria.
### Key Features
- **Model Integration**: Uses Clinical BERT for embedding criteria and BioBERT for Named Entity Recognition (NER) to detect diseases.
- **Disease Detection**: Identifies disease terms in criteria and applies a similarity weight boost when disease terms match.
- **Similarity Calculation**: Calculates average similarity scores between inclusion and exclusion criteria with a weight adjustment for disease matches.
### Requirements
- **Libraries**: `transformers`, `torch`, `sklearn`, and `re` for text processing, embedding, and similarity calculations.
- **Enhanced Criteria Check**: Displays similarity scores and highlights disease term matches to aid in clinical eligibility assessment.
# Clinical Trial Evaluation and Conflict Detection
## Description
This script evaluates clinical trials by checking for conflicts and calculating similarity scores between user-defined criteria and trial criteria from a database. It combines Clinical BERT for text embeddings, BioBERT for disease recognition, and caching for faster similarity calculations.
### Key Features
- **Model Integration**: Uses Clinical BERT for embeddings and BioBERT for Named Entity Recognition to identify diseases.
- **Conflict Detection**: Checks for conflicts between user inclusion/exclusion and trial inclusion/exclusion criteria.
- **Disease Term Weighting**: Enhances similarity scores by applying a weight boost when disease terms match.
- **Top Trial Recommendations**: Retrieves and sorts trials by similarity scores, recommending the top 10 most relevant trials.
### Requirements
- **Libraries**: `pandas`, `transformers`, `torch`, `sklearn`, `re`, and `ast` for text processing, data management, and similarity calculations.
- **Efficient Processing**: Caches embeddings for quicker similarity calculations, making it suitable for large databases.
"""
import pandas as pd
from transformers import AutoTokenizer, AutoModel, pipeline
from sklearn.metrics.pairwise import cosine_similarity
import re
import ast
import json
import torch
from ast import literal_eval
# Load Clinical BERT model and BioBERT NER pipeline
clinical_tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
clinical_model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
disease_pipeline = pipeline("ner", model="alvaroalon2/biobert_diseases_ner", tokenizer="alvaroalon2/biobert_diseases_ner")
def clean_list(criteria_list):
# Keep medically relevant symbols and remove irrelevant ones
pattern = r"[^a-zA-Z0-9\s()/%:+-.,]"
return [re.sub(pattern, '', str(item)) for item in criteria_list if isinstance(item, str)]
# Function to parse JSON string embeddings from the DataFrame
def parse_criteria(criteria_str):
try:
# Try parsing as JSON first
return clean_list(json.loads(criteria_str))
except (json.JSONDecodeError, TypeError):
try:
# Try evaluating Python-style list strings
return clean_list(literal_eval(criteria_str))
except (ValueError, SyntaxError):
# Fallback to manual splitting
return clean_list(criteria_str.split(','))
# Function to embed text in case embeddings are missing in the database
def embed_text(text):
inputs = clinical_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = clinical_model(**inputs)
# Use the [CLS] token embedding
embeddings = outputs.last_hidden_state[:, 0, :].squeeze()
return embeddings.numpy()
# Check conflict between user inclusion and trial exclusion
def check_inclusion_exclusion_conflict(user_embeddings, trial_embeddings):
for user_text, user_embedding in user_embeddings.items():
for trial_text, trial_embedding in trial_embeddings.items():
similarity = cosine_similarity([user_embedding], [trial_embedding])[0][0]
if similarity > 0.90: # Conflict threshold
print(f"Conflict detected: '{user_text}' vs '{trial_text}' | Similarity: {similarity:.2f}")
return True
return False
# Identify diseases and calculate similarity with weight boost
def identify_disease_terms(criteria):
disease_terms = set()
for criterion in criteria:
disease_entities = disease_pipeline(criterion)
current_term = ""
for entity in disease_entities:
if entity['entity'] in ['B-DISEASE', 'I-DISEASE']:
token = entity['word'].replace("##", "")
if entity['entity'] == 'B-DISEASE':
if current_term:
disease_terms.add(current_term.strip())
current_term = token
else:
current_term += token
if current_term:
disease_terms.add(current_term.strip())
return disease_terms
def evaluate_trials(trial_data, user_inclusion, user_exclusion):
top_trials = []
# Cache embeddings for user criteria
user_inclusion_embeddings = {item: embed_text(item) for item in user_inclusion}
user_exclusion_embeddings = {item: embed_text(item) for item in user_exclusion}
# Identify disease terms from user criteria
all_user_criteria = user_inclusion + user_exclusion
disease_terms = identify_disease_terms(all_user_criteria)
for index, row in trial_data.iterrows():
try:
# Parse trial inclusion and exclusion criteria
trial_inclusion = parse_criteria(row['Inclusion']) if isinstance(row['Inclusion'], str) else []
trial_exclusion = parse_criteria(row['Exclusion']) if isinstance(row['Exclusion'], str) else []
# Embed trial criteria
trial_inclusion_embeddings = {text: embed_text(text) for text in trial_inclusion}
trial_exclusion_embeddings = {text: embed_text(text) for text in trial_exclusion}
# # Check conflicts
conflict_with_exclusion = check_inclusion_exclusion_conflict(user_inclusion_embeddings, trial_exclusion_embeddings)
conflict_with_inclusion = check_inclusion_exclusion_conflict(user_exclusion_embeddings, trial_inclusion_embeddings)
if conflict_with_exclusion or conflict_with_inclusion:
print(f"Conflict detected (Exclusion: {conflict_with_exclusion}, Inclusion: {conflict_with_inclusion}). Skipping trial.")
continue
# Log similarities
inclusion_scores = []
exclusion_scores = []
# Calculate inclusion similarity
for user_text, user_embedding in user_inclusion_embeddings.items():
for trial_text, trial_embedding in trial_inclusion_embeddings.items():
similarity = cosine_similarity([user_embedding], [trial_embedding])[0][0]
if any(term in user_text.lower() and term in trial_text.lower() for term in disease_terms):
similarity *= 1 # Weight boost for disease terms
inclusion_scores.append((user_text, trial_text, similarity))
# Calculate exclusion similarity
for user_text, user_embedding in user_exclusion_embeddings.items():
for trial_text, trial_embedding in trial_exclusion_embeddings.items():
similarity = cosine_similarity([user_embedding], [trial_embedding])[0][0]
if any(term in user_text.lower() and term in trial_text.lower() for term in disease_terms):
similarity *= 1 # Weight boost for disease terms
exclusion_scores.append((user_text, trial_text, similarity))
# Calculate combined similarity
inclusion_similarity = np.median([score[2] for score in inclusion_scores]) if inclusion_scores else 0
exclusion_similarity = np.median([score[2] for score in exclusion_scores]) if exclusion_scores else 0
combined_similarity = (inclusion_similarity + exclusion_similarity)
# Store trial details and similarity scores
top_trials.append({
'NCT Number': row['NCT Number'],
'Study Title': row['Study Title'],
'Study URL': row['Study URL'],
'Combined Similarity': combined_similarity,
'Inclusion Scores': inclusion_scores,
'Exclusion Scores': exclusion_scores,
'Brief Summary': row['Brief Summary']
})
except Exception as e:
print(f"Error processing trial index {index}, NCT Number: {row.get('NCT Number', 'Unknown')}: {e}")
# Sort and return top trials
top_trials = sorted(top_trials, key=lambda x: x['Combined Similarity'], reverse=True)[:10]
return top_trials
import gradio as gr
import pandas as pd
import re
# Assuming `generate_output`, `query_data`, `extract_keywords_with_fuzzy_and_direct`, and `evaluate_trials` are defined as per your code above
# Combined function for Gradio
def combined_gradio_function(user_input):
# Step 1: Generate inclusion and exclusion criteria using the model
criteria_output = generate_output(user_input, model,tokenizer)
# Step 2: Parse the inclusion and exclusion lists from the generated output
inclusion_match = re.search(r"The inclusion list equals: \[(.*?)\]", criteria_output)
exclusion_match = re.search(r"The exclusion list equals: \[(.*?)\]", criteria_output)
# Safely extract matches and convert them to lists if found
inclusion_list = inclusion_match.group(1).split(", ") if inclusion_match else []
exclusion_list = exclusion_match.group(1).split(", ") if exclusion_match else []
# Step 4: Query the database with extracted parameters to get the relevant subset
queried_data = "something"
# Step 5: Call evaluate_trials with queried_data and parsed criteria
top_trials = evaluate_trials(queried_data, inclusion_list, exclusion_list)
# Format top trials for display
# Combine the criteria output and top trials into the final Gradio output
return top_trials
def get_highest_similarity_per_trial(top_trials):
"""
Find the highest similarity for each user criterion for each trial in top_trials.
Args:
top_trials (list): A list of trial dictionaries, each containing 'Inclusion Scores' and 'Exclusion Scores'.
Returns:
tuple: Two dictionaries:
- trial_highest_scores_inclusion: Mapping trial IDs to highest inclusion similarity scores for each user criterion.
- trial_highest_scores_exclusion: Mapping trial IDs to highest exclusion similarity scores for each user criterion.
"""
trial_highest_scores_inclusion = {}
trial_highest_scores_exclusion = {}
# Process each trial
for trial in top_trials:
trial_id = trial.get('NCT Number', 'Unknown ID')
# Initialize dictionaries for this trial
trial_highest_scores_inclusion[trial_id] = {}
trial_highest_scores_exclusion[trial_id] = {}
# Process Inclusion Scores
inclusion_scores = trial.get('Inclusion Scores', [])
for user_inclusion, trial_inclusion, similarity in inclusion_scores:
# Check if current similarity is the highest for this user inclusion
if user_inclusion in trial_highest_scores_inclusion[trial_id]:
if similarity > trial_highest_scores_inclusion[trial_id][user_inclusion][0]:
trial_highest_scores_inclusion[trial_id][user_inclusion] = (similarity, trial_inclusion)
else:
# Initialize with the current similarity
trial_highest_scores_inclusion[trial_id][user_inclusion] = (similarity, trial_inclusion)
# Process Exclusion Scores
exclusion_scores = trial.get('Exclusion Scores', [])
for user_exclusion, trial_exclusion, similarity in exclusion_scores:
# Check if current similarity is the highest for this user exclusion
if user_exclusion in trial_highest_scores_exclusion[trial_id]:
if similarity > trial_highest_scores_exclusion[trial_id][user_exclusion][0]:
trial_highest_scores_exclusion[trial_id][user_exclusion] = (similarity, trial_exclusion)
else:
# Initialize with the current similarity
trial_highest_scores_exclusion[trial_id][user_exclusion] = (similarity, trial_exclusion)
return trial_highest_scores_inclusion, trial_highest_scores_exclusion
def get_highest_similarity_from_top_trials(top_trials):
"""
Process the Inclusion and Exclusion Scores in top_trials to find the highest similarity scores
along with the corresponding user criteria for each trial criterion.
Args:
top_trials (list): A list of trial dictionaries, each containing 'Inclusion Scores' and 'Exclusion Scores'.
Returns:
tuple: Two dictionaries:
- trial_highest_scores_inclusion: Mapping trial IDs to highest inclusion similarity scores.
- trial_highest_scores_exclusion: Mapping trial IDs to highest exclusion similarity scores.
"""
trial_highest_scores_inclusion = {}
trial_highest_scores_exclusion = {}
for trial in top_trials:
trial_id = trial.get('NCT Number', 'Unknown ID')
# Process Inclusion Scores
inclusion_scores = trial.get('Inclusion Scores', [])
highest_inclusion_scores = {}
for user_inclusion, trial_inclusion, similarity in inclusion_scores:
if trial_inclusion in highest_inclusion_scores:
# Update if current similarity is higher
if similarity > highest_inclusion_scores[trial_inclusion][0]:
highest_inclusion_scores[trial_inclusion] = (similarity, user_inclusion)
else:
# Add trial inclusion with the current similarity and user inclusion
highest_inclusion_scores[trial_inclusion] = (similarity, user_inclusion)
trial_highest_scores_inclusion[trial_id] = highest_inclusion_scores
# Process Exclusion Scores
exclusion_scores = trial.get('Exclusion Scores', [])
highest_exclusion_scores = {}
for user_exclusion, trial_exclusion, similarity in exclusion_scores:
if trial_exclusion in highest_exclusion_scores:
# Update if current similarity is higher
if similarity > highest_exclusion_scores[trial_exclusion][0]:
highest_exclusion_scores[trial_exclusion] = (similarity, user_exclusion)
else:
# Add trial exclusion with the current similarity and user exclusion
highest_exclusion_scores[trial_exclusion] = (similarity, user_exclusion)
trial_highest_scores_exclusion[trial_id] = highest_exclusion_scores
return trial_highest_scores_inclusion, trial_highest_scores_exclusion
from pyvis.network import Network
from math import radians, cos, sin
def add_newlines(data_dict):
"""
Adds a newline (\n) after every 10 words in each key and the first index of the tuple in the dictionary.
Args:
data_dict (dict): Dictionary with keys as strings and values as tuples.
Returns:
dict: Updated dictionary with newlines added in keys and the first index of the tuple.
"""
def add_newlines(text):
words = text.split()
result = []
for i in range(0, len(words), 10):
result.append(" ".join(words[i:i + 10]))
return "\n".join(result)
# Create a new dictionary with updated keys and values
updated_dict = {
add_newlines(key): (value[0], add_newlines(value[1]))
for key, value in data_dict.items()
}
return updated_dict
def create_two_graphs_from_trials(trial_highest_inclusion, trial_highest_exclusion, output_file):
"""
Creates two linear graphs:
- Graph 1 (User Conditions) on the left.
- Graph 2 (Trial Conditions) on the right.
Links nodes with edges labeled by similarity scores without overlapping edges.
Inclusion nodes are green, and exclusion nodes are red.
Parameters:
trial_highest_inclusion (dict): Inclusion trial data in the specified format.
trial_highest_exclusion (dict): Exclusion trial data in the specified format.
output_file (str): File path to save the output graph visualization.
"""
print(f"Creating two graphs from trials. Total trials: {len(trial_highest_inclusion)}")
print(f"Creating two graphs from trials. Total trials: {len(trial_highest_exclusion)}")
inclusion_avg_score = sum(score for score, _ in trial_highest_inclusion.values()) / len(trial_highest_inclusion)
exclusion_avg_score = sum(score for score, _ in trial_highest_exclusion.values()) / len(trial_highest_exclusion)
overall_avg_score = (inclusion_avg_score + exclusion_avg_score) / 2
incl = inclusion_avg_score - exclusion_avg_score #WHAT IS THIS?
# Initialize Pyvis Network
net = Network(height="800px", width="100%", directed=False, notebook=True)
net.toggle_physics(False)
font_size = 60
# Track unique nodes
user_condition_nodes = {}
trial_condition_nodes = {}
# Node vertical positioning
user_y_start = 0
trial_y_start = 0
vertical_spacing = 500 # Space between nodes
net.add_node(
"Inclusion_Overall_Score",
label="Inclusion Overall Score "+str(round(inclusion_avg_score, 2)), # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= -1000 , # Center the title
y=-500 # Place it above the graph
)
net.add_node(
"Exclusion_Overall_Score",
label="Exclusion Overall Score "+str(round(exclusion_avg_score, 2)), # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= 1000 , # Center the title
y=-500 # Place it above the graph
)
net.add_node(
"Overall_Score",
label="Overall Score "+str(round((overall_avg_score), 2)), # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= 0 , # Center the title
y=-800 # Place it above the graph
)
net.add_node(
"Trial criteria",
label="Trial criteria", # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= -1500 , # Center the title
y=-100 # Place it above the graph
)
net.add_node(
"Patient criteria",
label="Patient criteria", # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= 1500 , # Center the title
y=-100 # Place it above the graph
)
# Add Inclusion User Conditions (Graph 1)
for idx, (user_condition, (similarity_score, trial_condition)) in enumerate(trial_highest_inclusion.items()):
# User Condition Node (Green)
if user_condition not in user_condition_nodes:
x = -1500 # Left side for User Conditions
y = user_y_start + len(user_condition_nodes) * vertical_spacing + (user_condition.count('\n') * 20)
user_condition_nodes[user_condition] = {"x": x, "y": y}
net.add_node(user_condition, label=user_condition, shape="box", color={"border": "black", "background": "green"},title=user_condition, x=x, y=y, font={'color': 'white', 'size': font_size})
# Trial Condition Node (Green)
if trial_condition not in trial_condition_nodes:
x = 1500 # Right side for Trial Conditions
y = trial_y_start + len(trial_condition_nodes) * vertical_spacing + (trial_condition.count('\n') * 25)
trial_condition_nodes[trial_condition] = {"x": x, "y": y}
net.add_node(trial_condition, label=trial_condition, shape="box", color={"border": "black", "background": "green"}, title=trial_condition,x=x, y=y, font={'color': 'white', 'size': font_size})
# Add edge (Green for inclusion)
net.add_edge(
user_condition,
trial_condition,
label=f"{similarity_score:.2f}",
color="green",
width=similarity_score * 10,
arrows="to",
font={"size": 40}, # Adjust label font size
)
# Add Exclusion User Conditions (Graph 1)
for idx, (user_condition, (similarity_score, trial_condition)) in enumerate(trial_highest_exclusion.items()):
# User Condition Node (Red)
if user_condition not in user_condition_nodes:
x = -1500 # Left side for User Conditions
y = user_y_start + len(user_condition_nodes) * vertical_spacing
user_condition_nodes[user_condition] = {"x": x, "y": y}
net.add_node(user_condition, label=user_condition, shape="box", color={"border": "black", "background": "red"}, title=user_condition,x=x, y=y, font={'size': font_size})
# Trial Condition Node (Red)
if trial_condition not in trial_condition_nodes:
x = 1500 # Right side for Trial Conditions
y = trial_y_start + len(trial_condition_nodes) * vertical_spacing
trial_condition_nodes[trial_condition] = {"x": x, "y": y}
net.add_node(trial_condition, label=trial_condition, shape="box", color={"border": "black", "background": "red"}, title=trial_condition,x=x, y=y, font={'size': font_size})
# Add edge (Red for exclusion)
net.add_edge(
user_condition,
trial_condition,
label=f"{similarity_score:.2f}",
color="red",
width=similarity_score * 10,
arrows="to",
font={"size": 40}, # Adjust label font size
)
# Save the graph to an HTML file
net.show(output_file)
print(f"Graph saved as: {output_file}")
return output_file
"""# Dynamic Clinical Trial Data Extraction and Chat-Based Questioning
## Description
This script provides a Gradio-based interactive interface for extracting clinical trial filters, conditions, and generating relevant questions based on unmatched conditions. It allows users to input text, process filters, and engage in a dynamic question-answer session to refine eligibility criteria.
### Key Features
- **Filter and Condition Extraction**: Uses fuzzy and direct matching to identify trial criteria and conditions from input text.
- **Clinical Trial Matching**: Queries and compares user data with clinical trial summaries to identify unmatched conditions.
- **Dynamic Question Generation**: Generates questions based on unmatched conditions to enhance trial eligibility refinement.
- **Interactive Chat**: Provides an interactive session, allowing users to respond to questions until all relevant information is extracted.
### Requirements
- **Libraries**: `gradio`, `random`, and custom functions for keyword extraction, condition comparison, and trial querying.
- **State Management**: Manages chat history and extraction status, resetting as needed for new sessions.
"""
import gradio as gr
import random
import numpy as np
# Global variable for user input text
user_input_text = ""
queried_data = None
global_exclusion_list = []
global_inclusion_list = []
global_top_trials = []
global_condition_context_mapping = {}
def get_initial_state():
print("Initializing state...")
return {
"click_count": 0,
"chat_history": [],
"trials_extracted": False,
"questions": [],
"filters": "",
"conditions": "",
}
def extract_condition_with_context(condition, text):
"""
Locate a condition in the text and print its surrounding context.
Args:
condition (str): The condition to search for in the text.
text (str): The text where the condition should be located.
Returns:
dict: A dictionary containing the condition, its sentence, and surrounding context.
"""
# Ensure the condition is valid
if not condition or not isinstance(condition, str):
print("Invalid condition provided.")
return None
# Ensure the text is valid
if not text or not isinstance(text, str):
print("Invalid text provided.")
return None
# Split the text into sentences
sentences = text.split('.')
# Locate the condition and find surrounding sentences
for i, sentence in enumerate(sentences):
if condition.lower() in sentence.lower():
# Get surrounding sentences
before = sentences[i - 1] if i > 0 else None
after = sentences[i + 1] if i < len(sentences) - 1 else None
context = {
"Condition": condition,
"Before": before.strip() if before else None,
"Sentence": sentence.strip(),
"After": after.strip() if after else None,
}
# Print the context
return context
# If the condition was not found in the text
return None
def generate_questions_from_top_trials(top_trials, text):
"""
Generate and return a list of all questions from the brief summaries of the top trials.
Args:
top_trials (list): List of top trial details with brief summaries.
text (str): Input text to compare and generate questions.
"""
print(f"Generating questions from top trials. Input text: {text}")
print(f"Top Trials: {top_trials}")
all_questions = []
max_length = 512 # Max token limit for truncation
for trial in top_trials:
trial_id = trial['NCT Number']
study_title = trial['Study Title']
brief_summary = trial.get('Brief Summary')
# Ensure the brief summary is not None
if not brief_summary or not isinstance(brief_summary, str):
print(f"Skipping trial {trial_id} due to invalid or missing brief summary.")
continue
# Truncate brief summary to fit within model constraints
tokens = clinical_tokenizer.tokenize(brief_summary)
print(f"Tokens before truncation: {len(tokens)}")
if len(tokens) > max_length:
print(f"Truncating brief summary for trial {trial_id}.")
brief_summary = clinical_tokenizer.convert_tokens_to_string(tokens[:max_length])
# Generate questions from the brief summary
try:
questions = ner.compare_conditions(text, brief_summary)
unmatched_conditions = questions.get("Unmatched Conditions in Text 2", [])
for condition in unmatched_conditions:
context = extract_condition_with_context(condition, brief_summary)
if context:
# Add to the dictionary
global_condition_context_mapping[condition] = {
"Before": context["Before"],
"Sentence": context["Sentence"],
"After": context["After"],
}
# Dynamic question generation
dynamic_questions = [
f"Does she have {condition}?" for condition in unmatched_conditions
]
except Exception as e:
print(f"Error generating questions for Trial ID {trial_id}: {e}")
# Append questions to the result list
all_questions.append({
'Trial ID': trial_id,
'Study Title': study_title,
'Questions': dynamic_questions
})
# Flatten the list of all questions
flat_questions = [question for trial in all_questions for question in trial['Questions']]
return flat_questions
def generate_text_from_filters(extracted_filters, conditions, dynamic_questions):
"""
Generates a descriptive text based on the extracted filters, conditions, and dynamic questions.
Parameters:
extracted_filters (dict): A dictionary containing extracted filter data with keys like
'age_ranges', 'sex', 'status', and 'phases'.
conditions (list): A list of conditions being studied.
dynamic_questions (list): A list of dynamic questions to be answered.
Returns:
str: A descriptive text summarizing the extracted filters, conditions, and dynamic questions.
"""
parts = [] # List to hold the text segments
# Handle age ranges
if extracted_filters.get('age_ranges'):
age_text = f"You are looking for a trial that is focused on {', '.join(extracted_filters['age_ranges'])}."
parts.append(age_text)
# Handle sex
if extracted_filters.get('sex'):
sex_text = f"You identify as {extracted_filters['sex']}."
parts.append(sex_text)
# Handle status
if extracted_filters.get('status'):
status_text = f"Your trial status preferences include {', '.join(extracted_filters['status'])}."
parts.append(status_text)
# Handle phases
if extracted_filters.get('phases'):
phases_text = f"You are interested in trials from the phases {', '.join(extracted_filters['phases'])}."
parts.append(phases_text)
# Handle conditions
if conditions:
conditions_text = f"You are looking for a trial that is currently studying the following conditions: {', '.join(conditions)}."
parts.append(conditions_text)
# Handle dynamic questions
questions_text = f"You have {len(dynamic_questions)} questions to answer. Are you ready?"
parts.append(questions_text)
# Combine all parts into a single text with new lines
final_text = "\n".join(parts)
return final_text
def filter_similar_questions(questions, threshold=0.9):
"""
Remove similar questions from the list based on Clinical BERT embeddings.
Args:
questions (list): List of questions to process.
threshold (float): Cosine similarity threshold above which questions are considered similar.
Returns:
list: Filtered list of questions with duplicates removed.
"""
print(f"Filtering similar questions. Total questions: {len(questions)}")
if not questions:
return []
# Generate embeddings for each question
embeddings = []
for question in questions:
inputs = clinical_tokenizer(question, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = clinical_model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().numpy())
# Convert embeddings to a NumPy array
embeddings = np.array(embeddings)
print(f"Generated embeddings for questions.")
# Pairwise similarity matrix
similarity_matrix = cosine_similarity(embeddings)
print(f"Similarity matrix computed.")
# Keep track of indices to retain
retain_indices = set(range(len(questions)))
for i in range(len(questions)):
if i not in retain_indices:
continue
for j in range(i + 1, len(questions)):
if j in retain_indices and similarity_matrix[i][j] > threshold:
retain_indices.discard(j) # Remove similar question
# Return filtered questions
filtered_questions = [questions[i] for i in sorted(retain_indices)]
return filtered_questions
def extract_filters_conditions_and_questions(text):
extracted_filters = extract_keywords_with_fuzzy_and_direct(text)
queried_data = query_data(extracted_filters,text)
Brief_Summary = queried_data['Brief Summary'].tolist()
conditions = extract_conditions(text)
return extracted_filters, conditions, Brief_Summary, queried_data
def recommendation_function_creation(inclusion_list, exclusion_list, queried_data):
top_trials = evaluate_trials(queried_data, inclusion_list, exclusion_list)
return top_trials
def extract_data(text, state):
global user_input_text, queried_data, global_exclusion_list, global_inclusion_list
extracted_filters, conditions, clinical_trial_ids, queried_data = extract_filters_conditions_and_questions(text)
if not clinical_trial_ids:
state["trials_extracted"] = False
return [(text, "No trials found. Please try again.")], "", "", "", state
criteria_output = generate_output(text)
inclusion_match = re.search(r"Inclusion: \[(.*?)\]", criteria_output)
exclusion_match = re.search(r"Exclusion: \[(.*?)\]", criteria_output)
inclusion_list = inclusion_match.group(1).split(", ") if inclusion_match else []
exclusion_list = exclusion_match.group(1).split(", ") if exclusion_match else []
global_inclusion_list = inclusion_list
global_exclusion_list = exclusion_list
top_trials = recommendation_function_creation(inclusion_list, exclusion_list,queried_data)
dynamic_questions = generate_questions_from_top_trials(top_trials, text)
dynamic_questions = list(dict.fromkeys(dynamic_questions))
dynamic_questions = filter_similar_questions(dynamic_questions)
user_info = generate_text_from_filters(extracted_filters,conditions,dynamic_questions)
print(f"Questions after filtering: {dynamic_questions}")
state["trials_extracted"] = True
state["filters"] = extracted_filters
state["conditions"] = conditions
state["questions"] = dynamic_questions
# If questions exist, save chat history and user input text
if dynamic_questions:
state["chat_history"].append((text, user_info))
if not dynamic_questions:
state["chat_history"].append((text, "Trials extracted. No questions need to be asked."))
user_input_text = " ".join([entry[0] for entry in state["chat_history"]])
return state["chat_history"], extracted_filters, conditions, dynamic_questions, state
# Function to handle chat based on extracted questions
def handle_chat(text, state):
global user_input_text, global_inclusion_list, global_exclusion_list
if state["click_count"] < len(state["questions"]):
# Get the current question and extract condition
current_question = state["questions"][state["click_count"]]
condition = current_question.replace("Does he have ", "").strip("?") # Extract condition
# Format response based on user's input ("yes" or "no")
response = text.strip().lower()
if response == "yes":
# Check if the condition exists in the condition_context_mapping dictionary
if condition in global_condition_context_mapping:
# Add the corresponding sentence to the global_inclusion_list
global_inclusion_list.append(f"the patient agreed to having this condition: {condition} from the following description {global_condition_context_mapping[condition]['Sentence']}")
else:
global_inclusion_list.append(condition) # Add to inclusion
elif response == "no":
if condition in global_condition_context_mapping:
# Add the corresponding sentence to the global_inclusion_list
global_exclusion_list.append(f"the patient did not agreed to having this condition: {condition} from the following description {global_condition_context_mapping[condition]['Sentence']}")
else:
global_exclusion_list.append(condition) # Add to inclusion
# Format response based on user's input ("yes" or "no")
formatted_response = f" , {text} have {condition} "
# Append formatted response to chat history and user_input_text
state["chat_history"].append((text, current_question))
user_input_text += f"{formatted_response} " # Accumulate all responses
# Move to the next question
state["click_count"] += 1
else:
# End of questions handling
state["chat_history"].append((text, "Thank you for answering all questions. Moving to extraction."))
state["questions"] = []
user_input_text = user_input_text.strip() # Remove any trailing space
return state["chat_history"], state["filters"], state["conditions"], state["questions"], state
# Main function to determine whether to extract data or continue chat
def toggle_function(text, state):
if not state["trials_extracted"]:
return extract_data(text, state)
elif state["questions"]:
return handle_chat(text, state)
else:
state["chat_history"].append((text, "Session has ended."))
global user_input_text
user_input_text = " ".join([entry[1] for entry in state["chat_history"] if isinstance(entry[1], str)]).strip()
return state["chat_history"], state["filters"], state["conditions"], state["questions"], state
import pandas as pd
import gradio as gr
def display_recommendations():
global user_input_text, queried_data, global_inclusion_list, global_exclusion_list, global_top_trials
top_trials = recommendation_function_creation(global_inclusion_list, global_exclusion_list, queried_data)
global_top_trials = top_trials
print(f"Top trials: {top_trials}")
print(f"inclusion list: {global_inclusion_list}")
print(f"exclusion list: {global_exclusion_list}")
# Example usage
result_inclusion, result_exclusion = get_highest_similarity_from_top_trials(top_trials)
print(f" the results are vewlwiwjfqowifejoirewoiurhgwegw")
print(result_inclusion)
print(result_exclusion)
# Convert to DataFrame
if isinstance(top_trials, list) and all(isinstance(trial, dict) for trial in top_trials):
top_trials_df = pd.DataFrame(top_trials)
else:
raise ValueError("Top trials is not in the expected list of dictionaries format.")
# Generate graph files
graph_files = []
for idx, trial_id in enumerate(top_trials_df["NCT Number"]): # Assuming "NCT Number" exists
file_name = f"trial_graph_{idx + 1}.html"
create_two_graphs_from_trials(
add_newlines(result_inclusion.get(trial_id, {})),
add_newlines(result_exclusion.get(trial_id, {})),
file_name
)
graph_files.append(file_name)
print(f"inclusions: {global_inclusion_list}")
print(f"exclusions: {global_exclusion_list}")
# Return the DataFrame and list of files
return top_trials_df, graph_files
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
import re
# Load your fine-tuned model from Hugging Face
model_name = "peachfawn/llama3ClinicalTrialFinalFineTuned"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") # Move to CUDA
# Define the Alpaca prompt format
alpaca_prompt = """Below is a study objective that describes a clinical trial. Write an inclusion and exclusion criteria based on the given study objective.
### Study Objective:
{}
### Response (Inclusion and Exclusion Criteria):
{}"""
# Define a function for the Gradio interface
def generate_output(user_input):
# Prepare the input for the model
inputs = tokenizer(
[
alpaca_prompt.format(
user_input, # The input from Gradio
"" # Leave the input section blank for now
)
],
return_tensors="pt"
).to("cuda")
# Use a text streamer to capture the output
text_streamer = TextStreamer(tokenizer)
# Generate text with controlled randomness
generated_output = model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=800,
do_sample=True, # Allow sampling for diversity
top_k=50, # Consider the top 50 tokens for each step
top_p=0.9, # Use nucleus sampling with a threshold of 90%
temperature=0.7 # Temperature to control randomness
)
# Decode the generated text
output_text = tokenizer.decode(generated_output[0], skip_special_tokens=True)
return output_text
# Tab 1: First Gradio Interface (with button visibility control)
summary_text = "Here are the top recommended clinical trials based on your input."
with gr.Blocks() as demo:
with gr.Tab("Criteria Filters"):
# Define input components
condition = gr.Textbox(label="Condition")
term = gr.Textbox(label="Term")
treatment = gr.Textbox(label="Treatment")
study_status = gr.CheckboxGroup(
["Not yet recruiting", "Recruiting", "Active, not recruiting", "Completed", "Terminated",
"Other", "Enrolling by invitation", "Suspended", "Withdrawn", "Unknown"], label="Study Status Filters"
)
age_ranges = gr.CheckboxGroup(
["Child (birth - 17)", "Adult (18 - 64)", "Older adult (65+)"], label="Age Ranges"
)
sex = gr.Radio(["All", "Female", "Male"], label="Sex")
study_phase = gr.CheckboxGroup(
["Early Phase 1", "Phase 1", "Phase 2", "Phase 3", "Phase 4", "Not applicable"], label="Study Phase"
)
study_type = gr.CheckboxGroup(
["Interventional", "Observational", "Patient registries", "Expanded access", "Individual patients",
"Intermediate-size population", "Treatment IND/Protocol"], label="Study Type"
)
study_results = gr.CheckboxGroup(
["With results", "Without results"], label="Study Results"
)
study_documents = gr.CheckboxGroup(
["Study protocols", "Statistical analysis plans", "Informed consent forms"], label="Study Documents"
)
funder_type = gr.CheckboxGroup(
["NIH", "Other U.S. federal agency", "Industry", "All others (individuals, universities, organizations)"], label="Funder Type"
)
trials_per_batch = gr.Slider(1, 100, step=1, label="Number of Trials Per Batch")
# Output text box and buttons
output = gr.Textbox(label="Output")
first_button = gr.Button("Submit")
second_button = gr.Button("Create Inclusion and Exclusion Criteria", visible=False)
# First button triggers processing and shows the second button
first_button.click(
fn=process_page,
inputs=[condition, term, treatment, study_status, age_ranges, sex, study_phase, study_type, study_results, study_documents, funder_type, trials_per_batch],
outputs=[output, second_button]
)
# Second button for additional functionality
second_button.click(fn=process_eligibility_criteria, outputs=output)
# Tab 2: Second Gradio Interface (with chatbot layout)
with gr.Tab("Question Generation & Chatbot"):
extracted_filters = gr.Textbox(label="Extracted Filters")
extracted_conditions = gr.Textbox(label="Extracted Conditions")
generated_questions = gr.Textbox(label="Generated Questions")
chat_output = gr.Chatbot(label="Chat Output")
input_text = gr.Textbox(label="Enter Text")
submit_button = gr.Button("Submit")
reset_button = gr.Button("Reset All")
# Submit button logic to call toggle_function
submit_button.click(
fn=toggle_function,
inputs=[input_text, gr.State(get_initial_state())],
outputs=[chat_output, extracted_filters, extracted_conditions, generated_questions, gr.State(get_initial_state())]
)
# Reset button logic to reset the state
# Third tab to display recommendation results in a tabular format
with gr.Tab("Recommendation Results") as recommendation_tab:
# DataFrame for clinical trials
recommendation_dataframe = gr.DataFrame(label="Clinical Trials Data")
# File output for graph downloads
recommendation_files = gr.File(
label="Download Graph Files",
file_types=[".html"],
type="filepath" # Correct type parameter
)
# Set up the display function for the "Recommendation Results" tab
recommendation_tab.select(
fn=display_recommendations,
inputs=None,
outputs=[recommendation_dataframe, recommendation_files]
)
# Launch the app
# Launch the combined interface
demo.launch(debug=True)