Spaces:
Runtime error
Runtime error
File size: 87,231 Bytes
c567014 4d79a3d c567014 ee12b05 c567014 ee12b05 c567014 ee12b05 c567014 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 |
# -*- coding: utf-8 -*-
"""inclusion and exclusion criteria creation
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1c9JSnTukGHH0nC2U6pwEpc8T6LgGTJC6
"""
import gradio as gr
import re
import torch
import re
import spacy
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel, AutoConfig, AutoModelForCausalLM, TextStreamer
from sklearn.metrics.pairwise import cosine_similarity
from fuzzywuzzy import fuzz, process
from pyvis.network import Network
from math import radians, cos, sin
# Load your fine-tuned model from Hugging Face
# model_name = "peachfawn/llama3ClinicalTrialFinalFineTuned"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") # Move to CUDA
"""# Clinical Trials Web Scrapper
## Description
The Web Scrapper uses Gradio and Selenium to retrieve and process clinical trial data. It integrates an LLM model for generating inclusion and exclusion criteria based on study objectives.
### Key Features
- **Data Retrieval**: Fetches clinical trials data based on user-specified filters (condition, age, gender, phase, etc.).
- **Dynamic Download**: Downloads JSON and CSV formats for trial data and appends new data to an existing Excel file.
- **LLM Integration**: Uses a fine-tuned model to generate inclusion and exclusion criteria from study objectives.
- **User Interface**: A Gradio interface enables user inputs and shows generated criteria.
### Requirements
- **Libraries**: `gradio`, `selenium`, `pandas`, and `transformers`.
- **Gradio Interface**: A multi-step UI that allows filtering, downloading, and criteria generation.
"""
import gradio as gr
import os
import time
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
# Initialize an empty global variable to store extracted data
clinical_trials_data = []
# Mapping for filter values to their corresponding URL parameters
status_mapping_DB = {
"Not yet recruiting": "not",
"Recruiting": "rec",
"Active, not recruiting": "act",
"Completed": "com",
"Terminated": "ter",
"Enrolling by invitation": "enr",
"Suspended": "sus",
"Withdrawn": "wit",
"Unknown": "unk"
}
# Mapping for age values to their corresponding URL parameters
age_mapping_DB = {
"Child (birth - 17)": "child",
"Adult (18 - 64)": "adult",
"Older adult (65+)": "older"
}
# Mapping for gender values to their corresponding URL parameters
sex_mapping_DB = {
"All": "all",
"Female": "f",
"Male": "m"
}
# Mapping for study phase values to their corresponding URL parameters
phase_mapping_DB = {
"Early Phase 1": "0",
"Phase 1": "1",
"Phase 2": "2",
"Phase 3": "3",
"Phase 4": "4",
"Not applicable": "NA"
}
study_type_mapping_DB = {
"Interventional": "int",
"Observational": "obs",
"Patient registries": "obs_patreg",
"Expanded access": "exp",
"Individual patients": "exp_indiv",
"Intermediate-size population": "exp_inter",
"Treatment IND/Protocol": "exp_treat"
}
results_mapping_DB = {
"With results": "with",
"Without results": "without"
}
docs_mapping_DB = {
"Study protocols": "prot",
"Statistical analysis plans": "sap",
"Informed consent forms": "icf"
}
funder_type_mapping_DB = {
"NIH": "nih",
"Other U.S. federal agency": "fed",
"Industry": "industry",
"All others (individuals, universities, organizations)": "other"
}
# Set up Selenium driver
def setup_driver(download_dir):
chrome_options = webdriver.ChromeOptions()
prefs = {
"download.default_directory": download_dir,
"download.prompt_for_download": False,
"download.directory_upgrade": True,
"safebrowsing.enabled": True
}
chrome_options.add_experimental_option("prefs", prefs)
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
return webdriver.Chrome(options=chrome_options)
# Retry logic for clicks
def safe_click(driver, by, selector, retries=3, delay=2):
for attempt in range(retries):
try:
element = WebDriverWait(driver, 10).until(EC.element_to_be_clickable((by, selector)))
driver.execute_script("arguments[0].scrollIntoView(true);", element)
time.sleep(1) # Short delay after scrolling
element.click()
print(f"Clicked element {selector} on attempt {attempt + 1}")
return True
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
time.sleep(delay)
print(f"Failed to click element {selector} after {retries} retries.")
return False
# Download JSON file
def download_json_from_link(url):
project_dir = os.getcwd()
download_dir = os.path.join(project_dir, "downloads")
os.makedirs(download_dir, exist_ok=True)
driver = setup_driver(download_dir)
try:
driver.get(url)
open_modal_button = WebDriverWait(driver, 10).until(
EC.element_to_be_clickable((By.CLASS_NAME, "action-bar-button"))
)
open_modal_button.click()
print("Modal opened.")
json_option = WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.ID, "download-format-json"))
)
time.sleep(1) # Short delay to ensure stability
driver.execute_script("arguments[0].click();", json_option)
print("JSON format selected.")
download_button = WebDriverWait(driver, 10).until(
EC.element_to_be_clickable((By.CLASS_NAME, "primary-button"))
)
driver.execute_script("arguments[0].click();", download_button)
print("Download initiated.")
time.sleep(15) # Adjust based on download speed
downloaded_file_path = os.path.join(download_dir, "ctg-studies.json")
if os.path.exists(downloaded_file_path):
print(f"Found downloaded file: {downloaded_file_path}")
else:
print("Error: ctg-studies.json not found.")
except Exception as e:
print(f"Error: {e}")
finally:
driver.quit()
print("Browser closed.")
# Download CSV file
def download_csv_from_link(url):
new_rows = 0
project_dir = os.getcwd()
download_dir = os.path.join(project_dir, "downloads")
os.makedirs(download_dir, exist_ok=True)
driver = setup_driver(download_dir)
try:
driver.get(url)
if not safe_click(driver, By.CLASS_NAME, "action-bar-button"):
print("Failed to open modal for CSV.")
return
print("Modal opened for CSV.")
if not safe_click(driver, By.XPATH, "//button[contains(text(), 'Select all')]"):
print("Failed to select all fields for CSV.")
return
print("All fields selected for CSV.")
if not safe_click(driver, By.CLASS_NAME, "primary-button"):
print("Failed to initiate CSV download.")
return
print("Download initiated for CSV.")
time.sleep(15) # Adjust based on download speed
downloaded_file_path = os.path.join(download_dir, "ctg-studies.csv")
if os.path.exists(downloaded_file_path):
print(f"Found downloaded CSV file: {downloaded_file_path}")
print_file_contents(downloaded_file_path)
new_rows = append_to_excel(downloaded_file_path)
delete_file(downloaded_file_path)
else:
print("Error: CSV file not found.")
return new_rows
except Exception as e:
print(f"Error downloading CSV: {e}")
finally:
driver.quit()
print("Browser closed after CSV download.")
# Print file contents
def print_file_contents(file_path):
try:
data = pd.read_csv(file_path, encoding='utf-8')
print(f"Loaded data from {file_path}. Shape: {data.shape}")
print(data.head())
except Exception as e:
print(f"Error reading {file_path}: {e}")
# Append data to Excel file
def append_to_excel(new_file, main_file="clinical_trials_data_better_other.xlsx"):
try:
new_data = pd.read_csv(new_file, encoding='utf-8')
print(f"New data shape: {new_data.shape}")
if os.path.exists(main_file):
main_data = pd.read_excel(main_file)
print(f"Existing data shape: {main_data.shape}")
combined_data = pd.concat([main_data, new_data])
combined_data.drop_duplicates(subset=['NCT Number'], inplace=True)
new_rows_count = combined_data.shape[0] - main_data.shape[0]
print(f"Combined data shape after removing duplicates: {combined_data.shape}")
else:
print(f"{main_file} does not exist. Creating it.")
combined_data = new_data
new_rows_count = combined_data.shape[0] # All rows are new
combined_data.to_excel(main_file, index=False)
print(f"Data successfully saved to {main_file}.")
return new_rows_count
except pd.errors.EmptyDataError:
print(f"Error: {new_file} is empty or unreadable.")
except Exception as e:
print(f"Unexpected error: {e}")
# Delete file after processing
def delete_file(file_path):
try:
os.remove(file_path)
print(f"Deleted file: {file_path}")
except Exception as e:
print(f"Error deleting {file_path}: {e}")
def update_clinical_trials_with_json(json_file="/content/downloads/ctg-studies.json",
excel_file="clinical_trials_data_better_other.xlsx"):
try:
with open(json_file, 'r', encoding='utf-8') as f:
json_data = json.load(f)
print(f"Loaded JSON data from {json_file}.")
# Prepare data from JSON
new_entries = []
for trial in json_data:
nct_id = trial["protocolSection"]["identificationModule"].get("nctId")
detailed_description = trial["protocolSection"]["descriptionModule"].get("detailedDescription", "")
eligibility_criteria = trial["protocolSection"]["eligibilityModule"].get("eligibilityCriteria", "")
new_entries.append({
"NCT Number": nct_id,
"detailedDescription": detailed_description,
"eligibilityCriteria": eligibility_criteria
})
new_df = pd.DataFrame(new_entries)
# Check if the Excel file exists
if not os.path.exists(excel_file):
# If the file does not exist, save new_df as the initial data and return
new_df.to_excel(excel_file, index=False)
print(f"File {excel_file} created with initial data.")
return
# Load existing data
df = pd.read_excel(excel_file)
print(f"Loaded existing Excel data. Shape: {df.shape}")
# Merge existing data with new data on 'NCT Number', keeping all data
updated_df = pd.merge(df, new_df, on="NCT Number", how="outer", suffixes=('', '_new'))
# Update columns only where they are currently empty in the original data
if 'detailedDescription' in updated_df.columns and 'detailedDescription_new' in updated_df.columns:
updated_df['detailedDescription'] = updated_df['detailedDescription'].fillna(updated_df['detailedDescription_new'])
if 'eligibilityCriteria' in updated_df.columns and 'eligibilityCriteria_new' in updated_df.columns:
updated_df['eligibilityCriteria'] = updated_df['eligibilityCriteria'].fillna(updated_df['eligibilityCriteria_new'])
# Drop the '_new' columns after filling in the missing values
updated_df.drop(columns=['detailedDescription_new', 'eligibilityCriteria_new'], inplace=True, errors='ignore')
# Save the updated DataFrame back to the Excel file
updated_df.to_excel(excel_file, index=False)
print(f"Data successfully updated and saved to {excel_file}.")
except Exception as e:
print(f"Error updating Excel with JSON: {e}")
# Main function for Gradio
def process_page(condition, term, treatment, filters, age_ranges, sex, phases, study_types, results, docs, funder_type, numberOfTrialsPerBatch):
filter_query = ''
filter_parts = []
if filters:
filter_parts.append('status:' + ' '.join([status_mapping_DB[f] for f in filters if f in status_mapping_DB]))
if age_ranges:
filter_parts.append('ages:' + ' '.join([age_mapping_DB[a] for a in age_ranges if a in age_mapping_DB]))
if sex in ['Male', 'Female']:
filter_parts.append('sex:' + sex_mapping_DB[sex])
if phases:
filter_parts.append('phase:' + ' '.join([phase_mapping_DB[p] for p in phases if p in phase_mapping_DB]))
if study_types:
filter_parts.append('studyType:' + ' '.join([study_type_mapping_DB.get(st, st) for st in study_types]))
if results:
filter_parts.append('results:' + ' '.join([results_mapping_DB.get(r, r) for r in results]))
if docs:
filter_parts.append('docs:' + ' '.join([docs_mapping_DB.get(d, d) for d in docs]))
if funder_type:
filter_parts.append('funderType:' + ' '.join([funder_type_mapping_DB.get(f, f) for f in funder_type]))
if filter_parts:
filter_query = f"&aggFilters=" + ','.join(filter_parts)
url = f"https://clinicaltrials.gov/search?cond={condition}&term={term}&intr={treatment}&limit=100{filter_query}"
print(f"Constructed URL: {url}")
download_json_from_link(url)
new_rows = download_csv_from_link(url)
update_clinical_trials_with_json()
delete_file("/content/downloads/ctg-studies.json")
return new_rows, gr.update(visible=True)
#--------------------------------------------------------------------------------------------------
# Define a function to generate inclusion and exclusion criteria
def generate_output(user_input, model, tokenizer):
# Define the Alpaca prompt format
alpaca_prompt = """Below is a study objective that describes a clinical trial. Write an inclusion and exclusion criteria based on the given study objective.
### Study Objective:
{}
### Response (Inclusion and Exclusion Criteria):
{}"""
# Prepare the input for the model
inputs = tokenizer(
[
alpaca_prompt.format(
user_input, # The input from the eligibilityCriteria
"" # Leave the response section blank for now
)
],
return_tensors="pt"
).to("cuda")
# Use a text streamer to capture the output
text_streamer = TextStreamer(tokenizer)
# Generate text
generated_output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=2000)
# Return the generated text
output_text = tokenizer.decode(generated_output[0], skip_special_tokens=True)
return output_text
# Process eligibility criteria based on column presence
def process_eligibility_criteria():
# Load the model and tokenizer
file_path = "/content/clinical_trials_data_better_other.xlsx"
# Load the Excel file
df = pd.read_excel(file_path)
# Determine if this is a new file (i.e., no 'Inclusion' or 'Exclusion' columns)
is_new_file = 'Inclusion' not in df.columns or 'Exclusion' not in df.columns
# Process all rows if this is a new file
if is_new_file:
df['Inclusion'] = pd.NA
df['Exclusion'] = pd.NA
data_to_process = df # Process all rows for new files
else:
# Process only rows where 'Inclusion' or 'Exclusion' is empty
data_to_process = df[df['Inclusion'].isna() | df['Exclusion'].isna()]
for idx, row in data_to_process.iterrows():
try:
generated_text = generate_output(row['eligibilityCriteria'], model, tokenizer)
inclusion_start = generated_text.find("Inclusion:") + len("Inclusion:")
exclusion_start = generated_text.find("Exclusion:")
inclusion_criteria = generated_text[inclusion_start:exclusion_start].strip()
exclusion_criteria = generated_text[exclusion_start + len("Exclusion:"):].strip()
df.at[idx, 'Inclusion'] = inclusion_criteria
df.at[idx, 'Exclusion'] = exclusion_criteria
except Exception as e:
print(f"Error processing row with ID {row['NCT Number']}: {e}")
df.at[idx, 'Inclusion'] = "N/A"
df.at[idx, 'Exclusion'] = "N/A"
# Save the updated DataFrame back to the file
df.to_excel(file_path, index=False)
print(f"\nAll required rows processed! Updated file saved to {file_path}")
"""*query data"""
import pandas as pd
# Load the Excel file
df = pd.read_excel('Clinical_trial_DB_with_embeddings.xlsx')
# # Function to query the data based on extracted keywords
# def query_data(extracted_params):
# filtered_df = df # Start with the entire DataFrame
# # Apply study status filter
# if extracted_params['status']:
# status_pattern = '|'.join(extracted_params['status'])
# filtered_df = filtered_df[filtered_df['Study Status'].str.contains(status_pattern, case=False, na=False)]
# # Apply age ranges filter
# if extracted_params['age_ranges']:
# age_pattern = '|'.join(extracted_params['age_ranges'])
# filtered_df = filtered_df[filtered_df['Age'].str.contains(age_pattern, case=False, na=False)]
# # Apply sex filter
# if extracted_params['sex']:
# filtered_df = filtered_df[filtered_df['Sex'].str.contains(extracted_params['sex'], case=False, na=False)]
# # Apply phases filter
# if extracted_params['phases']:
# phases_pattern = '|'.join(extracted_params['phases'])
# filtered_df = filtered_df[filtered_df['Phases'].str.contains(phases_pattern, case=False, na=False)]
# return filtered_df
from fuzzywuzzy import fuzz
import pandas as pd
def query_data(extracted_params, text):
filtered_df = df.copy() # Start with the entire DataFrame
# Apply study status filter
if extracted_params['status']:
status_pattern = '|'.join(extracted_params['status'])
filtered_df = filtered_df[filtered_df['Study Status'].str.contains(status_pattern, case=False, na=False)]
# Apply age ranges filter
if extracted_params['age_ranges']:
age_pattern = '|'.join(extracted_params['age_ranges'])
filtered_df = filtered_df[filtered_df['Age'].str.contains(age_pattern, case=False, na=False)]
# Apply sex filter
if extracted_params['sex']:
filtered_df = filtered_df[filtered_df['Sex'].str.contains(extracted_params['sex'], case=False, na=False)]
# Apply phases filter
if extracted_params['phases']:
phases_pattern = '|'.join(extracted_params['phases'])
filtered_df = filtered_df[filtered_df['Phases'].str.contains(phases_pattern, case=False, na=False)]
# Extract conditions from the text
conditions = extract_conditions(text) # Extract the phrase (e.g., ["brain cancer"])
# Ensure conditions is not empty and is a list
if conditions and isinstance(conditions, list):
# Check if "glioma" exists in the list and is not at index 0
if "glioma" in conditions and conditions[0] != "glioma":
# Remove "glioma" from its current position
conditions.remove("glioma")
# Insert "glioma" at index 0
conditions.insert(0, "glioma")
print(f"The conditions before the query IS IS IS -----> {conditions}")
# Apply substring matching on "Brief Summary"
if conditions and not filtered_df.empty:
search_condition = str(conditions[0]).lower().strip()
# Normalize "Brief Summary" column
filtered_df['Brief Summary'] = filtered_df['Brief Summary'].fillna("").str.lower()
# Check for substring matches
brief_summary_matches = []
for index, row in filtered_df.iterrows():
brief_summary = row['Brief Summary']
if search_condition in brief_summary: # Substring match
brief_summary_matches.append(index)
else:
# Fallback: Partial fuzzy matching for close matches
match_score = fuzz.partial_ratio(search_condition, brief_summary)
if match_score >= 70:
brief_summary_matches.append(index)
# Filter the DataFrame to only include rows with matching indices
filtered_df = filtered_df.loc[brief_summary_matches]
return filtered_df
def extract_from_excel_by_ids(ids):
"""
Extract rows from an Excel file that match a given list of IDs.
Args:
ids (list): List of Clinical Trial IDs to filter the data by.
Returns:
pd.DataFrame: Filtered DataFrame containing only rows that match the provided IDs.
"""
# Load the Excel data
df = pd.read_excel("Clinical_trial_DB_with_embeddings.xlsx")
# Filter the DataFrame by IDs
filtered_df = df[df['NCT Number'].isin(ids)]
return filtered_df
"""LLAMA 3 MODEL"""
"""# Clinical Criteria Conflict Detection
## Description
This script uses Clinical BERT to detect conflicts between user-defined inclusion/exclusion criteria and clinical trial criteria. It leverages text embedding and cosine similarity to identify potential conflicts, particularly relevant in clinical trials for patient eligibility assessment.
### Key Features
- **Model Loading**: Loads Bio_ClinicalBERT to create text embeddings for criteria comparison.
- **Data Cleaning**: Cleans criteria lists by removing special characters.
- **Conflict Detection**: Checks for conflicts between user and trial criteria, excluding age-based items, using cosine similarity for accuracy.
### Requirements
- **Libraries**: `transformers`, `torch`, `sklearn`, and `re` for text processing and similarity calculations.
- **Criteria Check**: Prints detected conflicts with a similarity threshold of 0.85 to highlight potential eligibility mismatches.
"""
class MedicalNER:
def __init__(self):
# Load Clinical BERT tokenizer and model for disease extraction (NER)
disease_model_name = 'emilyalsentzer/Bio_ClinicalBERT'
self.disease_tokenizer = AutoTokenizer.from_pretrained(disease_model_name)
self.disease_model = AutoModelForTokenClassification.from_pretrained("alvaroalon2/biobert_diseases_ner")
# Load a second model for age and gender extraction (Biomedical NER)
age_gender_model_name = 'd4data/biomedical-ner-all' # Model trained for biomedical NER
self.age_gender_tokenizer = AutoTokenizer.from_pretrained(age_gender_model_name)
self.age_gender_model = AutoModelForTokenClassification.from_pretrained(age_gender_model_name)
# Load Clinical BERT model for sentence embeddings
embedding_model_name = 'emilyalsentzer/Bio_ClinicalBERT'
self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name)
self.embedding_model = AutoModel.from_pretrained(embedding_model_name)
# Create pipelines
self.disease_pipeline = pipeline("ner", model=self.disease_model, tokenizer=self.disease_tokenizer)
self.age_gender_pipeline = pipeline("ner", model=self.age_gender_model, tokenizer=self.age_gender_tokenizer)
# Method to extract age and gender entities
def extract_age_gender(self, text):
age_gender_entities = self.age_gender_pipeline(text)
return age_gender_entities
# Method to dynamically convert descriptors like "twenties" or "thirties" to an age range
def descriptor_to_age_range(self, descriptor):
base_age = {"twenties": 20, "thirties": 30, "forties": 40, "fifties": 50, "sixties": 60, "seventies": 70, "eighties": 80, "nineties": 90}
if descriptor in base_age:
start_age = base_age[descriptor]
end_age = start_age + 9
return f"{start_age}-{end_age}"
return None
# Method to merge tokens like "late thirties" and extract age
def extract_age_from_entities(self, entities, text):
age = None
for i, entity in enumerate(entities):
if entity['entity'] == 'B-Age': # Found the start of an age entity
age = entity['word']
if i + 1 < len(entities) and entities[i + 1]['entity'] == 'I-Age':
age += " " + entities[i + 1]['word']
if not age:
# Check for numerical ages or descriptive ages like "late thirties"
age_match = re.search(r'\b(?:at|age|am|turning|around|about)\s*(\d+)\b', text, re.IGNORECASE)
if age_match:
age = age_match.group(1)
else:
# Corrected the regex to ensure both groups are captured properly
age_range_match = re.search(r'\b(early|mid|late)\s*(twenties|thirties|forties|fifties|sixties|seventies|eighties|nineties)\b', text, re.IGNORECASE)
if age_range_match:
# Ensure both groups are captured
descriptor = age_range_match.group(2).lower() if age_range_match.group(2) else None
if descriptor:
age_range = self.descriptor_to_age_range(descriptor)
if age_range:
if "early" in age_range_match.group(1).lower():
age = age_range.split('-')[0] # e.g., "30" for early thirties
elif "mid" in age_range_match.group(1).lower():
start, end = map(int, age_range.split('-'))
age = f"{start+2}-{end-2}" # e.g., "32-37" for mid-thirties
elif "late" in age_range_match.group(1).lower():
age = age_range.split('-')[1] # e.g., "39" for late thirties
return age
# Function to merge subword tokens back into full words and combine consecutive tokens
def merge_subwords_and_conditions(self, entities):
merged = []
current_phrase = ""
for entity in entities:
word = entity['word']
if word.startswith("##"):
current_phrase += word[2:] # Append subword without ##
else:
if current_phrase:
merged[-1] += current_phrase # Append the subword to the last word
current_phrase = ""
if len(merged) > 0 and entity['entity'] == 'I-DISEASE':
merged[-1] += " " + word # Merge consecutive disease tokens
else:
merged.append(word) # Start a new word/phrase
if current_phrase:
merged[-1] += current_phrase
return merged
# Method to remove exact and similar duplicates from a list of conditions
def remove_duplicates(self, conditions):
# Using a set to remove exact duplicates and retain unique conditions
unique_conditions = set(conditions)
cleaned_conditions = []
for condition in unique_conditions:
is_substring = False
for other_condition in unique_conditions:
if condition != other_condition and condition in other_condition:
is_substring = True
break
if not is_substring:
cleaned_conditions.append(condition)
return cleaned_conditions
# Method to extract conditions, treatments, age, and gender from text
def extract_info(self, text):
# Extract disease-related entities
disease_entities = self.disease_pipeline(text)
condition = []
treatment = []
for entity in disease_entities:
if entity['entity'] == 'B-DISEASE' or entity['entity'] == 'I-DISEASE':
condition.append(entity)
elif entity['entity'] == 'B-TREATMENT':
treatment.append(entity['word'])
# Extract age and gender using second model
age_gender_entities = self.extract_age_gender(text)
age = self.extract_age_from_entities(age_gender_entities, text)
sex = None
for entity in age_gender_entities:
if entity['entity'] == 'B-Sex':
sex = entity['word']
# Merge and clean condition entities
condition_words = self.merge_subwords_and_conditions(condition)
unique_conditions = self.remove_duplicates(condition_words)
return {
"Condition": unique_conditions,
"Treatment": treatment,
"Age": age,
"Sex": sex
}
# Method to compute sentence embeddings for a given condition
def get_sentence_embedding(self, condition):
inputs = self.embedding_tokenizer(condition, return_tensors='pt', truncation=True, max_length=128)
outputs = self.embedding_model(**inputs)
# Take the mean of the last hidden state to create a fixed-size vector
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings
# Method to compute cosine similarity between two conditions
def compute_similarity(self, condition1, condition2):
embedding1 = self.get_sentence_embedding(condition1)
embedding2 = self.get_sentence_embedding(condition2)
similarity = cosine_similarity(embedding1.detach().numpy(), embedding2.detach().numpy())
return similarity[0][0]
# Method to compare conditions between two texts
def compare_conditions(self, text1, text2):
conditions_text1 = self.extract_info(text1)["Condition"]
conditions_text2 = self.extract_info(text2)["Condition"]
if not conditions_text1 or not conditions_text2:
print("No conditions extracted in one or both texts.")
return {
"Unmatched Conditions in Text 2": [],
"Conditions in Text 1": conditions_text1,
"Conditions in Text 2": conditions_text2
}
unmatched_conditions = []
for condition2 in conditions_text2:
found_match = False
for condition1 in conditions_text1:
similarity_score = self.compute_similarity(condition1, condition2)
if similarity_score > 0.95: # Threshold for similarity
found_match = True
break
if not found_match:
unmatched_conditions.append(condition2)
return {
"Unmatched Conditions in Text 2": unmatched_conditions,
"Conditions in Text 1": conditions_text1,
"Conditions in Text 2": conditions_text2
}
# Instantiate the MedicalNER class
ner = MedicalNER()
print(ner.compare_conditions("i am a male with coronary artery disease" , "The objective of our work to determine the mechanisms of myocardial infarction in women without obstructive coronary artery disease."))
# Define a function that extracts conditions from text
def extract_conditions(text):
# Run extract_info and get the "Condition" only
result = ner.extract_info(text)
conditions = result["Condition"]
return conditions
"""# Enhanced Criteria Extraction and Matching
## Description
This script utilizes spaCy for NLP processing to detect and map keywords related to clinical trial criteria. It includes updated mappings for statuses, age groups, gender, and trial phases. Using keyword and fuzzy matching, the script can accurately detect eligibility criteria for clinical trials based on text input.
### Key Features
- **Model Loading**: Loads spaCy for text preprocessing and matching functions.
- **Keyword Mapping**: Direct and fuzzy matching for trial statuses, age groups, gender, and phases.
- **Age and Gender Detection**: Uses regex patterns to identify age ranges and gender in text.
- **Preprocessing**: Text is cleaned for uniform matching, supporting efficient keyword extraction.
### Requirements
- **Libraries**: `spacy`, `re`, and `fuzzywuzzy` for text processing and similarity matching.
- **Criteria Check**: Maps text inputs to predefined categories for trial criteria, enhancing eligibility filtering.
"""
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
# Updated core keywords for filters
status_mapping = {
"Not yet recruiting": "NOT_YET_RECRUITING",
"Recruiting": "RECRUITING",
"Active, not recruiting": "ACTIVE",
"Completed": "COMPLETED",
"Terminated": "TERMINATED",
"Enrolling by invitation": "ENROLLING_BY_INVITATION",
"Suspended": "SUSPENDED",
"Withdrawn": "WITHDRAWN",
"Unknown": "UNKNOWN"
}
age_mapping = {
"Child (birth - 17)": "CHILD",
"Adult (18 - 64)": "ADULT",
"Older adult (65+)": "OLDER_ADULT"
}
sex_mapping = {
"All": "ALL",
"Female": "FEMALE",
"Male": "MALE"
}
phase_mapping = {
"Early Phase 1": "Early_Phase1",
"Phase 1": "PHASE1",
"Phase 2": "PHASE2",
"Phase 3": "PHASE3",
"Phase 4": "PHASE4",
"Not applicable": "NOT_APPLICABLE"
}
# Preprocessing text
def preprocess_text(text):
text = text.lower()
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[^\w\s]', '', text)
return text
# Keyword matching functions to return mapped values directly
def match_keywords(text, keyword_mapping):
matches = []
for key, value in keyword_mapping.items():
if key.lower() in text:
matches.append(value) # Return the mapped value directly
return matches
def fuzzy_match_keywords(text, keyword_mapping, threshold=80):
matches = []
for key, value in keyword_mapping.items():
best_match = process.extractOne(text, [key], scorer=fuzz.partial_ratio)
if best_match and best_match[1] >= threshold:
matches.append(value) # Return the mapped value directly
return matches
# Detect age ranges based on new mappings
def detect_age_ranges(text):
detected_ages = set()
if re.search(r'\bchild(ren)?\b|\bkid(s)?\b|\bteen(ager)?\b', text):
detected_ages.add("CHILD")
if re.search(r'\bolder adult(s)?\b|\b65 and older\b|\bover 65\b|\babove 65\b', text):
detected_ages.add("OLDER_ADULT")
elif re.search(r'\badult(s)?\b|\b18 to 65\b|\bbetween 18 and 65\b', text):
detected_ages.add("ADULT")
if "all ages" in text:
detected_ages.update(["CHILD", "ADULT", "OLDER_ADULT"])
# Match numeric age ranges and categorize accordingly
ages = re.findall(r'\b\d{1,2}\b', text)
for age in ages:
age = int(age)
if age < 18:
detected_ages.add("CHILD")
elif 19 <= age <= 64:
detected_ages.add("ADULT")
elif age > 64:
detected_ages.add("OLDER_ADULT")
return list(detected_ages)
# Detect gender with new mappings
def detect_gender(text):
detected_genders = []
if "female" in text:
detected_genders.append(sex_mapping["Female"])
if "male" in text:
detected_genders.append(sex_mapping["Male"])
if "all genders" in text or "all sexes" in text:
return sex_mapping["All"]
return detected_genders[0] if detected_genders else None
# Status matching
def match_status(text):
status_matches = match_keywords(text, status_mapping)
if not status_matches:
status_matches = fuzzy_match_keywords(text, status_mapping, threshold=80)
return status_matches
# Main function with improved matching logic
def extract_keywords_with_fuzzy_and_direct(text):
text = preprocess_text(text)
extracted_params = {
'status': [],
'age_ranges': [],
'sex': None,
'phases': [],
}
# Handle all-ages or all-phases cases
if "all ages" in text:
extracted_params['age_ranges'] = list(age_mapping.values())
if "all phases" in text:
extracted_params['phases'] = list(phase_mapping.values())
# Extract status
extracted_params['status'] = match_status(text)
# Extract age ranges
detected_ages = detect_age_ranges(text)
extracted_params['age_ranges'] = [value for key, value in age_mapping.items() if value in detected_ages]
# Extract gender
extracted_params['sex'] = detect_gender(text)
# Extract phases
if not extracted_params['phases']:
phase_matches = match_keywords(text, phase_mapping)
if not phase_matches:
phase_matches = fuzzy_match_keywords(text, phase_mapping)
extracted_params['phases'] = list(set(phase_matches))
# Remove "PHASE1" if "Early_Phase1" exists
if "Early_Phase1" in extracted_params['phases'] and "PHASE1" in extracted_params['phases']:
extracted_params['phases'].remove("PHASE1")
return extracted_params
# # Sample usage
# sample_texts = [
# "This study is for phase 1 and is curretnly not yet recurting",
# ]
# for text in sample_texts:
# extracted_params = extract_keywords_with_fuzzy_and_direct(text)
# print("Extracted Parameters:")
# print(extracted_params)
# print()
# Set up the Gradio interface
"""# Clinical Criteria Conflict Detection
## Description
This script uses Clinical BERT to detect conflicts between user-defined inclusion/exclusion criteria and clinical trial criteria. It leverages text embedding and cosine similarity to identify potential conflicts, particularly relevant in clinical trials for patient eligibility assessment.
### Key Features
- **Model Loading**: Loads Bio_ClinicalBERT to create text embeddings for criteria comparison.
- **Data Cleaning**: Cleans criteria lists by removing special characters.
- **Conflict Detection**: Checks for conflicts between user and trial criteria, excluding age-based items, using cosine similarity for accuracy.
### Requirements
- **Libraries**: `transformers`, `torch`, `sklearn`, and `re` for text processing and similarity calculations.
- **Criteria Check**: Prints detected conflicts with a similarity threshold of 0.85 to highlight potential eligibility mismatches.
"""
from transformers import AutoTokenizer, AutoModel
import torch
from sklearn.metrics.pairwise import cosine_similarity
import re
# Load Clinical BERT model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
# Function to clean the list
def clean_list(criteria_list):
pattern = r"[^a-zA-Z0-9\s?,.!-]"
return [re.sub(pattern, '', item) for item in criteria_list]
# Function to embed text
def embed_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze()
return embeddings.numpy()
# Basic similarity function for simple comparison
def calculate_similarity(item1, item2):
item1_embedding = embed_text(item1)
item2_embedding = embed_text(item2)
similarity = cosine_similarity([item1_embedding], [item2_embedding])[0][0]
return similarity
# Function to check conflict between user inclusion and trial exclusion criteria
def check_inclusion_exclusion_conflict(user_inclusion, trial_exclusion):
for user_item in user_inclusion:
for trial_item in trial_exclusion:
# Skip items containing 'age' or 'years old'
if "age" in user_item.lower() or "years old" in user_item.lower():
continue
similarity = calculate_similarity(user_item, trial_item)
if similarity > 0.85: # Using a basic threshold to decide a conflict
print(f"Conflict detected between User Inclusion '{user_item}' and Trial Exclusion '{trial_item}' | Similarity: {similarity:.2f}")
return True
return False
# Function to check conflict between user exclusion and trial inclusion criteria
def check_exclusion_inclusion_conflict(user_exclusion, trial_inclusion):
for user_item in user_exclusion:
for trial_item in trial_inclusion:
# Skip items containing 'age' or 'years old'
if "age" in user_item.lower() or "years old" in user_item.lower():
continue
similarity = calculate_similarity(user_item, trial_item)
if similarity > 0.85: # Using a basic threshold to decide a conflict
print(f"Conflict detected between User Exclusion '{user_item}' and Trial Inclusion '{trial_item}' | Similarity: {similarity:.2f}")
return True
return False
# Example criteria
user_inclusion = ["18 years old", "type 2 diabetes", "heart failure"]
trial_inclusion = ['* ST- segment elevation patients.', '* Patients who are candidate for add-on treatment with Mineralocorticoid receptor antagonists (MRAs) to improve cardiac remodeling.', '* Age of 18 years to 80 years.', '* Written informed consent of the subject to participate in the study.']
trial_exclusion = ['* Contraindications to Mineralocorticoid receptor antagonists (MRA) including: serum potassium \\>5.5 mEq/L at initiation; CrCl Γ’β°Β€30 mL/minute; concomitant use of strong CYP3A4 inhibitors; concomitant use with potassium supplements or potassium-sparing diuretics.', '* Mild-to-severe valvular stenosis or severe (grade III/IV) valvular regurgitation', '* Pregnant or nursing women.', "* Non cardiac disorders associated with increased growth factor (e.g., HIV, Alzheimer, Crohn's disease, Cancer, glomerulonephritis, glomerulosclerosis, diabetic nephropathy, muscle atrophy, fibrotic conditions and burns).", '* Patients with chronic heart failure with reduced ejection fraction (LVEF \\<40%).']
user_exclusion = ["smoker", "history of cancer", "don't want Mineralocorticoid", "does not want too sign or write any consent form"]
# Clean criteria lists
trial_inclusion = clean_list(trial_inclusion)
trial_exclusion = clean_list(trial_exclusion)
user_inclusion = clean_list(user_inclusion)
user_exclusion = clean_list(user_exclusion)
# Check for conflicts
inclusion_exclusion_conflict = check_inclusion_exclusion_conflict(user_inclusion, trial_exclusion)
exclusion_inclusion_conflict = check_exclusion_inclusion_conflict(user_exclusion, trial_inclusion)
# Output results
print(f"Inclusion-Exclusion Conflict Detected: {inclusion_exclusion_conflict}")
print(f"Exclusion-Inclusion Conflict Detected: {exclusion_inclusion_conflict}")
"""# Clinical Criteria Similarity and Disease Detection
## Description
This script leverages Clinical BERT for text embeddings and BioBERT for disease recognition to assess similarities between user and trial criteria. By identifying disease terms and applying weight adjustments, it enhances the accuracy of similarity scores between inclusion and exclusion criteria.
### Key Features
- **Model Integration**: Uses Clinical BERT for embedding criteria and BioBERT for Named Entity Recognition (NER) to detect diseases.
- **Disease Detection**: Identifies disease terms in criteria and applies a similarity weight boost when disease terms match.
- **Similarity Calculation**: Calculates average similarity scores between inclusion and exclusion criteria with a weight adjustment for disease matches.
### Requirements
- **Libraries**: `transformers`, `torch`, `sklearn`, and `re` for text processing, embedding, and similarity calculations.
- **Enhanced Criteria Check**: Displays similarity scores and highlights disease term matches to aid in clinical eligibility assessment.
# Clinical Trial Evaluation and Conflict Detection
## Description
This script evaluates clinical trials by checking for conflicts and calculating similarity scores between user-defined criteria and trial criteria from a database. It combines Clinical BERT for text embeddings, BioBERT for disease recognition, and caching for faster similarity calculations.
### Key Features
- **Model Integration**: Uses Clinical BERT for embeddings and BioBERT for Named Entity Recognition to identify diseases.
- **Conflict Detection**: Checks for conflicts between user inclusion/exclusion and trial inclusion/exclusion criteria.
- **Disease Term Weighting**: Enhances similarity scores by applying a weight boost when disease terms match.
- **Top Trial Recommendations**: Retrieves and sorts trials by similarity scores, recommending the top 10 most relevant trials.
### Requirements
- **Libraries**: `pandas`, `transformers`, `torch`, `sklearn`, `re`, and `ast` for text processing, data management, and similarity calculations.
- **Efficient Processing**: Caches embeddings for quicker similarity calculations, making it suitable for large databases.
"""
import pandas as pd
from transformers import AutoTokenizer, AutoModel, pipeline
from sklearn.metrics.pairwise import cosine_similarity
import re
import ast
import json
import torch
from ast import literal_eval
# Load Clinical BERT model and BioBERT NER pipeline
clinical_tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
clinical_model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
disease_pipeline = pipeline("ner", model="alvaroalon2/biobert_diseases_ner", tokenizer="alvaroalon2/biobert_diseases_ner")
def clean_list(criteria_list):
# Keep medically relevant symbols and remove irrelevant ones
pattern = r"[^a-zA-Z0-9\s()/%:+-.,]"
return [re.sub(pattern, '', str(item)) for item in criteria_list if isinstance(item, str)]
# Function to parse JSON string embeddings from the DataFrame
def parse_criteria(criteria_str):
try:
# Try parsing as JSON first
return clean_list(json.loads(criteria_str))
except (json.JSONDecodeError, TypeError):
try:
# Try evaluating Python-style list strings
return clean_list(literal_eval(criteria_str))
except (ValueError, SyntaxError):
# Fallback to manual splitting
return clean_list(criteria_str.split(','))
# Function to embed text in case embeddings are missing in the database
def embed_text(text):
inputs = clinical_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = clinical_model(**inputs)
# Use the [CLS] token embedding
embeddings = outputs.last_hidden_state[:, 0, :].squeeze()
return embeddings.numpy()
# Check conflict between user inclusion and trial exclusion
def check_inclusion_exclusion_conflict(user_embeddings, trial_embeddings):
for user_text, user_embedding in user_embeddings.items():
for trial_text, trial_embedding in trial_embeddings.items():
similarity = cosine_similarity([user_embedding], [trial_embedding])[0][0]
if similarity > 0.90: # Conflict threshold
print(f"Conflict detected: '{user_text}' vs '{trial_text}' | Similarity: {similarity:.2f}")
return True
return False
# Identify diseases and calculate similarity with weight boost
def identify_disease_terms(criteria):
disease_terms = set()
for criterion in criteria:
disease_entities = disease_pipeline(criterion)
current_term = ""
for entity in disease_entities:
if entity['entity'] in ['B-DISEASE', 'I-DISEASE']:
token = entity['word'].replace("##", "")
if entity['entity'] == 'B-DISEASE':
if current_term:
disease_terms.add(current_term.strip())
current_term = token
else:
current_term += token
if current_term:
disease_terms.add(current_term.strip())
return disease_terms
def evaluate_trials(trial_data, user_inclusion, user_exclusion):
top_trials = []
# Cache embeddings for user criteria
user_inclusion_embeddings = {item: embed_text(item) for item in user_inclusion}
user_exclusion_embeddings = {item: embed_text(item) for item in user_exclusion}
# Identify disease terms from user criteria
all_user_criteria = user_inclusion + user_exclusion
disease_terms = identify_disease_terms(all_user_criteria)
for index, row in trial_data.iterrows():
try:
# Parse trial inclusion and exclusion criteria
trial_inclusion = parse_criteria(row['Inclusion']) if isinstance(row['Inclusion'], str) else []
trial_exclusion = parse_criteria(row['Exclusion']) if isinstance(row['Exclusion'], str) else []
# Embed trial criteria
trial_inclusion_embeddings = {text: embed_text(text) for text in trial_inclusion}
trial_exclusion_embeddings = {text: embed_text(text) for text in trial_exclusion}
# # Check conflicts
conflict_with_exclusion = check_inclusion_exclusion_conflict(user_inclusion_embeddings, trial_exclusion_embeddings)
conflict_with_inclusion = check_inclusion_exclusion_conflict(user_exclusion_embeddings, trial_inclusion_embeddings)
if conflict_with_exclusion or conflict_with_inclusion:
print(f"Conflict detected (Exclusion: {conflict_with_exclusion}, Inclusion: {conflict_with_inclusion}). Skipping trial.")
continue
# Log similarities
inclusion_scores = []
exclusion_scores = []
# Calculate inclusion similarity
for user_text, user_embedding in user_inclusion_embeddings.items():
for trial_text, trial_embedding in trial_inclusion_embeddings.items():
similarity = cosine_similarity([user_embedding], [trial_embedding])[0][0]
if any(term in user_text.lower() and term in trial_text.lower() for term in disease_terms):
similarity *= 1 # Weight boost for disease terms
inclusion_scores.append((user_text, trial_text, similarity))
# Calculate exclusion similarity
for user_text, user_embedding in user_exclusion_embeddings.items():
for trial_text, trial_embedding in trial_exclusion_embeddings.items():
similarity = cosine_similarity([user_embedding], [trial_embedding])[0][0]
if any(term in user_text.lower() and term in trial_text.lower() for term in disease_terms):
similarity *= 1 # Weight boost for disease terms
exclusion_scores.append((user_text, trial_text, similarity))
# Calculate combined similarity
inclusion_similarity = np.median([score[2] for score in inclusion_scores]) if inclusion_scores else 0
exclusion_similarity = np.median([score[2] for score in exclusion_scores]) if exclusion_scores else 0
combined_similarity = (inclusion_similarity + exclusion_similarity)
# Store trial details and similarity scores
top_trials.append({
'NCT Number': row['NCT Number'],
'Study Title': row['Study Title'],
'Study URL': row['Study URL'],
'Combined Similarity': combined_similarity,
'Inclusion Scores': inclusion_scores,
'Exclusion Scores': exclusion_scores,
'Brief Summary': row['Brief Summary']
})
except Exception as e:
print(f"Error processing trial index {index}, NCT Number: {row.get('NCT Number', 'Unknown')}: {e}")
# Sort and return top trials
top_trials = sorted(top_trials, key=lambda x: x['Combined Similarity'], reverse=True)[:10]
return top_trials
import gradio as gr
import pandas as pd
import re
# Assuming `generate_output`, `query_data`, `extract_keywords_with_fuzzy_and_direct`, and `evaluate_trials` are defined as per your code above
# Combined function for Gradio
def combined_gradio_function(user_input):
# Step 1: Generate inclusion and exclusion criteria using the model
criteria_output = generate_output(user_input, model,tokenizer)
# Step 2: Parse the inclusion and exclusion lists from the generated output
inclusion_match = re.search(r"The inclusion list equals: \[(.*?)\]", criteria_output)
exclusion_match = re.search(r"The exclusion list equals: \[(.*?)\]", criteria_output)
# Safely extract matches and convert them to lists if found
inclusion_list = inclusion_match.group(1).split(", ") if inclusion_match else []
exclusion_list = exclusion_match.group(1).split(", ") if exclusion_match else []
# Step 4: Query the database with extracted parameters to get the relevant subset
queried_data = "something"
# Step 5: Call evaluate_trials with queried_data and parsed criteria
top_trials = evaluate_trials(queried_data, inclusion_list, exclusion_list)
# Format top trials for display
# Combine the criteria output and top trials into the final Gradio output
return top_trials
def get_highest_similarity_per_trial(top_trials):
"""
Find the highest similarity for each user criterion for each trial in top_trials.
Args:
top_trials (list): A list of trial dictionaries, each containing 'Inclusion Scores' and 'Exclusion Scores'.
Returns:
tuple: Two dictionaries:
- trial_highest_scores_inclusion: Mapping trial IDs to highest inclusion similarity scores for each user criterion.
- trial_highest_scores_exclusion: Mapping trial IDs to highest exclusion similarity scores for each user criterion.
"""
trial_highest_scores_inclusion = {}
trial_highest_scores_exclusion = {}
# Process each trial
for trial in top_trials:
trial_id = trial.get('NCT Number', 'Unknown ID')
# Initialize dictionaries for this trial
trial_highest_scores_inclusion[trial_id] = {}
trial_highest_scores_exclusion[trial_id] = {}
# Process Inclusion Scores
inclusion_scores = trial.get('Inclusion Scores', [])
for user_inclusion, trial_inclusion, similarity in inclusion_scores:
# Check if current similarity is the highest for this user inclusion
if user_inclusion in trial_highest_scores_inclusion[trial_id]:
if similarity > trial_highest_scores_inclusion[trial_id][user_inclusion][0]:
trial_highest_scores_inclusion[trial_id][user_inclusion] = (similarity, trial_inclusion)
else:
# Initialize with the current similarity
trial_highest_scores_inclusion[trial_id][user_inclusion] = (similarity, trial_inclusion)
# Process Exclusion Scores
exclusion_scores = trial.get('Exclusion Scores', [])
for user_exclusion, trial_exclusion, similarity in exclusion_scores:
# Check if current similarity is the highest for this user exclusion
if user_exclusion in trial_highest_scores_exclusion[trial_id]:
if similarity > trial_highest_scores_exclusion[trial_id][user_exclusion][0]:
trial_highest_scores_exclusion[trial_id][user_exclusion] = (similarity, trial_exclusion)
else:
# Initialize with the current similarity
trial_highest_scores_exclusion[trial_id][user_exclusion] = (similarity, trial_exclusion)
return trial_highest_scores_inclusion, trial_highest_scores_exclusion
def get_highest_similarity_from_top_trials(top_trials):
"""
Process the Inclusion and Exclusion Scores in top_trials to find the highest similarity scores
along with the corresponding user criteria for each trial criterion.
Args:
top_trials (list): A list of trial dictionaries, each containing 'Inclusion Scores' and 'Exclusion Scores'.
Returns:
tuple: Two dictionaries:
- trial_highest_scores_inclusion: Mapping trial IDs to highest inclusion similarity scores.
- trial_highest_scores_exclusion: Mapping trial IDs to highest exclusion similarity scores.
"""
trial_highest_scores_inclusion = {}
trial_highest_scores_exclusion = {}
for trial in top_trials:
trial_id = trial.get('NCT Number', 'Unknown ID')
# Process Inclusion Scores
inclusion_scores = trial.get('Inclusion Scores', [])
highest_inclusion_scores = {}
for user_inclusion, trial_inclusion, similarity in inclusion_scores:
if trial_inclusion in highest_inclusion_scores:
# Update if current similarity is higher
if similarity > highest_inclusion_scores[trial_inclusion][0]:
highest_inclusion_scores[trial_inclusion] = (similarity, user_inclusion)
else:
# Add trial inclusion with the current similarity and user inclusion
highest_inclusion_scores[trial_inclusion] = (similarity, user_inclusion)
trial_highest_scores_inclusion[trial_id] = highest_inclusion_scores
# Process Exclusion Scores
exclusion_scores = trial.get('Exclusion Scores', [])
highest_exclusion_scores = {}
for user_exclusion, trial_exclusion, similarity in exclusion_scores:
if trial_exclusion in highest_exclusion_scores:
# Update if current similarity is higher
if similarity > highest_exclusion_scores[trial_exclusion][0]:
highest_exclusion_scores[trial_exclusion] = (similarity, user_exclusion)
else:
# Add trial exclusion with the current similarity and user exclusion
highest_exclusion_scores[trial_exclusion] = (similarity, user_exclusion)
trial_highest_scores_exclusion[trial_id] = highest_exclusion_scores
return trial_highest_scores_inclusion, trial_highest_scores_exclusion
from pyvis.network import Network
from math import radians, cos, sin
def add_newlines(data_dict):
"""
Adds a newline (\n) after every 10 words in each key and the first index of the tuple in the dictionary.
Args:
data_dict (dict): Dictionary with keys as strings and values as tuples.
Returns:
dict: Updated dictionary with newlines added in keys and the first index of the tuple.
"""
def add_newlines(text):
words = text.split()
result = []
for i in range(0, len(words), 10):
result.append(" ".join(words[i:i + 10]))
return "\n".join(result)
# Create a new dictionary with updated keys and values
updated_dict = {
add_newlines(key): (value[0], add_newlines(value[1]))
for key, value in data_dict.items()
}
return updated_dict
def create_two_graphs_from_trials(trial_highest_inclusion, trial_highest_exclusion, output_file):
"""
Creates two linear graphs:
- Graph 1 (User Conditions) on the left.
- Graph 2 (Trial Conditions) on the right.
Links nodes with edges labeled by similarity scores without overlapping edges.
Inclusion nodes are green, and exclusion nodes are red.
Parameters:
trial_highest_inclusion (dict): Inclusion trial data in the specified format.
trial_highest_exclusion (dict): Exclusion trial data in the specified format.
output_file (str): File path to save the output graph visualization.
"""
print(f"Creating two graphs from trials. Total trials: {len(trial_highest_inclusion)}")
print(f"Creating two graphs from trials. Total trials: {len(trial_highest_exclusion)}")
inclusion_avg_score = sum(score for score, _ in trial_highest_inclusion.values()) / len(trial_highest_inclusion)
exclusion_avg_score = sum(score for score, _ in trial_highest_exclusion.values()) / len(trial_highest_exclusion)
overall_avg_score = (inclusion_avg_score + exclusion_avg_score) / 2
incl = inclusion_avg_score - exclusion_avg_score #WHAT IS THIS?
# Initialize Pyvis Network
net = Network(height="800px", width="100%", directed=False, notebook=True)
net.toggle_physics(False)
font_size = 60
# Track unique nodes
user_condition_nodes = {}
trial_condition_nodes = {}
# Node vertical positioning
user_y_start = 0
trial_y_start = 0
vertical_spacing = 500 # Space between nodes
net.add_node(
"Inclusion_Overall_Score",
label="Inclusion Overall Score "+str(round(inclusion_avg_score, 2)), # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= -1000 , # Center the title
y=-500 # Place it above the graph
)
net.add_node(
"Exclusion_Overall_Score",
label="Exclusion Overall Score "+str(round(exclusion_avg_score, 2)), # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= 1000 , # Center the title
y=-500 # Place it above the graph
)
net.add_node(
"Overall_Score",
label="Overall Score "+str(round((overall_avg_score), 2)), # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= 0 , # Center the title
y=-800 # Place it above the graph
)
net.add_node(
"Trial criteria",
label="Trial criteria", # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= -1500 , # Center the title
y=-100 # Place it above the graph
)
net.add_node(
"Patient criteria",
label="Patient criteria", # Text for the title
shape="box",
color={"background": "white", "border": "white"},
font={"size": 80, "color": "black", "bold": True},
x= 1500 , # Center the title
y=-100 # Place it above the graph
)
# Add Inclusion User Conditions (Graph 1)
for idx, (user_condition, (similarity_score, trial_condition)) in enumerate(trial_highest_inclusion.items()):
# User Condition Node (Green)
if user_condition not in user_condition_nodes:
x = -1500 # Left side for User Conditions
y = user_y_start + len(user_condition_nodes) * vertical_spacing + (user_condition.count('\n') * 20)
user_condition_nodes[user_condition] = {"x": x, "y": y}
net.add_node(user_condition, label=user_condition, shape="box", color={"border": "black", "background": "green"},title=user_condition, x=x, y=y, font={'color': 'white', 'size': font_size})
# Trial Condition Node (Green)
if trial_condition not in trial_condition_nodes:
x = 1500 # Right side for Trial Conditions
y = trial_y_start + len(trial_condition_nodes) * vertical_spacing + (trial_condition.count('\n') * 25)
trial_condition_nodes[trial_condition] = {"x": x, "y": y}
net.add_node(trial_condition, label=trial_condition, shape="box", color={"border": "black", "background": "green"}, title=trial_condition,x=x, y=y, font={'color': 'white', 'size': font_size})
# Add edge (Green for inclusion)
net.add_edge(
user_condition,
trial_condition,
label=f"{similarity_score:.2f}",
color="green",
width=similarity_score * 10,
arrows="to",
font={"size": 40}, # Adjust label font size
)
# Add Exclusion User Conditions (Graph 1)
for idx, (user_condition, (similarity_score, trial_condition)) in enumerate(trial_highest_exclusion.items()):
# User Condition Node (Red)
if user_condition not in user_condition_nodes:
x = -1500 # Left side for User Conditions
y = user_y_start + len(user_condition_nodes) * vertical_spacing
user_condition_nodes[user_condition] = {"x": x, "y": y}
net.add_node(user_condition, label=user_condition, shape="box", color={"border": "black", "background": "red"}, title=user_condition,x=x, y=y, font={'size': font_size})
# Trial Condition Node (Red)
if trial_condition not in trial_condition_nodes:
x = 1500 # Right side for Trial Conditions
y = trial_y_start + len(trial_condition_nodes) * vertical_spacing
trial_condition_nodes[trial_condition] = {"x": x, "y": y}
net.add_node(trial_condition, label=trial_condition, shape="box", color={"border": "black", "background": "red"}, title=trial_condition,x=x, y=y, font={'size': font_size})
# Add edge (Red for exclusion)
net.add_edge(
user_condition,
trial_condition,
label=f"{similarity_score:.2f}",
color="red",
width=similarity_score * 10,
arrows="to",
font={"size": 40}, # Adjust label font size
)
# Save the graph to an HTML file
net.show(output_file)
print(f"Graph saved as: {output_file}")
return output_file
"""# Dynamic Clinical Trial Data Extraction and Chat-Based Questioning
## Description
This script provides a Gradio-based interactive interface for extracting clinical trial filters, conditions, and generating relevant questions based on unmatched conditions. It allows users to input text, process filters, and engage in a dynamic question-answer session to refine eligibility criteria.
### Key Features
- **Filter and Condition Extraction**: Uses fuzzy and direct matching to identify trial criteria and conditions from input text.
- **Clinical Trial Matching**: Queries and compares user data with clinical trial summaries to identify unmatched conditions.
- **Dynamic Question Generation**: Generates questions based on unmatched conditions to enhance trial eligibility refinement.
- **Interactive Chat**: Provides an interactive session, allowing users to respond to questions until all relevant information is extracted.
### Requirements
- **Libraries**: `gradio`, `random`, and custom functions for keyword extraction, condition comparison, and trial querying.
- **State Management**: Manages chat history and extraction status, resetting as needed for new sessions.
"""
import gradio as gr
import random
import numpy as np
# Global variable for user input text
user_input_text = ""
queried_data = None
global_exclusion_list = []
global_inclusion_list = []
global_top_trials = []
global_condition_context_mapping = {}
def get_initial_state():
print("Initializing state...")
return {
"click_count": 0,
"chat_history": [],
"trials_extracted": False,
"questions": [],
"filters": "",
"conditions": "",
}
def extract_condition_with_context(condition, text):
"""
Locate a condition in the text and print its surrounding context.
Args:
condition (str): The condition to search for in the text.
text (str): The text where the condition should be located.
Returns:
dict: A dictionary containing the condition, its sentence, and surrounding context.
"""
# Ensure the condition is valid
if not condition or not isinstance(condition, str):
print("Invalid condition provided.")
return None
# Ensure the text is valid
if not text or not isinstance(text, str):
print("Invalid text provided.")
return None
# Split the text into sentences
sentences = text.split('.')
# Locate the condition and find surrounding sentences
for i, sentence in enumerate(sentences):
if condition.lower() in sentence.lower():
# Get surrounding sentences
before = sentences[i - 1] if i > 0 else None
after = sentences[i + 1] if i < len(sentences) - 1 else None
context = {
"Condition": condition,
"Before": before.strip() if before else None,
"Sentence": sentence.strip(),
"After": after.strip() if after else None,
}
# Print the context
return context
# If the condition was not found in the text
return None
def generate_questions_from_top_trials(top_trials, text):
"""
Generate and return a list of all questions from the brief summaries of the top trials.
Args:
top_trials (list): List of top trial details with brief summaries.
text (str): Input text to compare and generate questions.
"""
print(f"Generating questions from top trials. Input text: {text}")
print(f"Top Trials: {top_trials}")
all_questions = []
max_length = 512 # Max token limit for truncation
for trial in top_trials:
trial_id = trial['NCT Number']
study_title = trial['Study Title']
brief_summary = trial.get('Brief Summary')
# Ensure the brief summary is not None
if not brief_summary or not isinstance(brief_summary, str):
print(f"Skipping trial {trial_id} due to invalid or missing brief summary.")
continue
# Truncate brief summary to fit within model constraints
tokens = clinical_tokenizer.tokenize(brief_summary)
print(f"Tokens before truncation: {len(tokens)}")
if len(tokens) > max_length:
print(f"Truncating brief summary for trial {trial_id}.")
brief_summary = clinical_tokenizer.convert_tokens_to_string(tokens[:max_length])
# Generate questions from the brief summary
try:
questions = ner.compare_conditions(text, brief_summary)
unmatched_conditions = questions.get("Unmatched Conditions in Text 2", [])
for condition in unmatched_conditions:
context = extract_condition_with_context(condition, brief_summary)
if context:
# Add to the dictionary
global_condition_context_mapping[condition] = {
"Before": context["Before"],
"Sentence": context["Sentence"],
"After": context["After"],
}
# Dynamic question generation
dynamic_questions = [
f"Does she have {condition}?" for condition in unmatched_conditions
]
except Exception as e:
print(f"Error generating questions for Trial ID {trial_id}: {e}")
# Append questions to the result list
all_questions.append({
'Trial ID': trial_id,
'Study Title': study_title,
'Questions': dynamic_questions
})
# Flatten the list of all questions
flat_questions = [question for trial in all_questions for question in trial['Questions']]
return flat_questions
def generate_text_from_filters(extracted_filters, conditions, dynamic_questions):
"""
Generates a descriptive text based on the extracted filters, conditions, and dynamic questions.
Parameters:
extracted_filters (dict): A dictionary containing extracted filter data with keys like
'age_ranges', 'sex', 'status', and 'phases'.
conditions (list): A list of conditions being studied.
dynamic_questions (list): A list of dynamic questions to be answered.
Returns:
str: A descriptive text summarizing the extracted filters, conditions, and dynamic questions.
"""
parts = [] # List to hold the text segments
# Handle age ranges
if extracted_filters.get('age_ranges'):
age_text = f"You are looking for a trial that is focused on {', '.join(extracted_filters['age_ranges'])}."
parts.append(age_text)
# Handle sex
if extracted_filters.get('sex'):
sex_text = f"You identify as {extracted_filters['sex']}."
parts.append(sex_text)
# Handle status
if extracted_filters.get('status'):
status_text = f"Your trial status preferences include {', '.join(extracted_filters['status'])}."
parts.append(status_text)
# Handle phases
if extracted_filters.get('phases'):
phases_text = f"You are interested in trials from the phases {', '.join(extracted_filters['phases'])}."
parts.append(phases_text)
# Handle conditions
if conditions:
conditions_text = f"You are looking for a trial that is currently studying the following conditions: {', '.join(conditions)}."
parts.append(conditions_text)
# Handle dynamic questions
questions_text = f"You have {len(dynamic_questions)} questions to answer. Are you ready?"
parts.append(questions_text)
# Combine all parts into a single text with new lines
final_text = "\n".join(parts)
return final_text
def filter_similar_questions(questions, threshold=0.9):
"""
Remove similar questions from the list based on Clinical BERT embeddings.
Args:
questions (list): List of questions to process.
threshold (float): Cosine similarity threshold above which questions are considered similar.
Returns:
list: Filtered list of questions with duplicates removed.
"""
print(f"Filtering similar questions. Total questions: {len(questions)}")
if not questions:
return []
# Generate embeddings for each question
embeddings = []
for question in questions:
inputs = clinical_tokenizer(question, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = clinical_model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().numpy())
# Convert embeddings to a NumPy array
embeddings = np.array(embeddings)
print(f"Generated embeddings for questions.")
# Pairwise similarity matrix
similarity_matrix = cosine_similarity(embeddings)
print(f"Similarity matrix computed.")
# Keep track of indices to retain
retain_indices = set(range(len(questions)))
for i in range(len(questions)):
if i not in retain_indices:
continue
for j in range(i + 1, len(questions)):
if j in retain_indices and similarity_matrix[i][j] > threshold:
retain_indices.discard(j) # Remove similar question
# Return filtered questions
filtered_questions = [questions[i] for i in sorted(retain_indices)]
return filtered_questions
def extract_filters_conditions_and_questions(text):
extracted_filters = extract_keywords_with_fuzzy_and_direct(text)
queried_data = query_data(extracted_filters,text)
Brief_Summary = queried_data['Brief Summary'].tolist()
conditions = extract_conditions(text)
return extracted_filters, conditions, Brief_Summary, queried_data
def recommendation_function_creation(inclusion_list, exclusion_list, queried_data):
top_trials = evaluate_trials(queried_data, inclusion_list, exclusion_list)
return top_trials
def extract_data(text, state):
global user_input_text, queried_data, global_exclusion_list, global_inclusion_list
extracted_filters, conditions, clinical_trial_ids, queried_data = extract_filters_conditions_and_questions(text)
if not clinical_trial_ids:
state["trials_extracted"] = False
return [(text, "No trials found. Please try again.")], "", "", "", state
criteria_output = generate_output(text)
inclusion_match = re.search(r"Inclusion: \[(.*?)\]", criteria_output)
exclusion_match = re.search(r"Exclusion: \[(.*?)\]", criteria_output)
inclusion_list = inclusion_match.group(1).split(", ") if inclusion_match else []
exclusion_list = exclusion_match.group(1).split(", ") if exclusion_match else []
global_inclusion_list = inclusion_list
global_exclusion_list = exclusion_list
top_trials = recommendation_function_creation(inclusion_list, exclusion_list,queried_data)
dynamic_questions = generate_questions_from_top_trials(top_trials, text)
dynamic_questions = list(dict.fromkeys(dynamic_questions))
dynamic_questions = filter_similar_questions(dynamic_questions)
user_info = generate_text_from_filters(extracted_filters,conditions,dynamic_questions)
print(f"Questions after filtering: {dynamic_questions}")
state["trials_extracted"] = True
state["filters"] = extracted_filters
state["conditions"] = conditions
state["questions"] = dynamic_questions
# If questions exist, save chat history and user input text
if dynamic_questions:
state["chat_history"].append((text, user_info))
if not dynamic_questions:
state["chat_history"].append((text, "Trials extracted. No questions need to be asked."))
user_input_text = " ".join([entry[0] for entry in state["chat_history"]])
return state["chat_history"], extracted_filters, conditions, dynamic_questions, state
# Function to handle chat based on extracted questions
def handle_chat(text, state):
global user_input_text, global_inclusion_list, global_exclusion_list
if state["click_count"] < len(state["questions"]):
# Get the current question and extract condition
current_question = state["questions"][state["click_count"]]
condition = current_question.replace("Does he have ", "").strip("?") # Extract condition
# Format response based on user's input ("yes" or "no")
response = text.strip().lower()
if response == "yes":
# Check if the condition exists in the condition_context_mapping dictionary
if condition in global_condition_context_mapping:
# Add the corresponding sentence to the global_inclusion_list
global_inclusion_list.append(f"the patient agreed to having this condition: {condition} from the following description {global_condition_context_mapping[condition]['Sentence']}")
else:
global_inclusion_list.append(condition) # Add to inclusion
elif response == "no":
if condition in global_condition_context_mapping:
# Add the corresponding sentence to the global_inclusion_list
global_exclusion_list.append(f"the patient did not agreed to having this condition: {condition} from the following description {global_condition_context_mapping[condition]['Sentence']}")
else:
global_exclusion_list.append(condition) # Add to inclusion
# Format response based on user's input ("yes" or "no")
formatted_response = f" , {text} have {condition} "
# Append formatted response to chat history and user_input_text
state["chat_history"].append((text, current_question))
user_input_text += f"{formatted_response} " # Accumulate all responses
# Move to the next question
state["click_count"] += 1
else:
# End of questions handling
state["chat_history"].append((text, "Thank you for answering all questions. Moving to extraction."))
state["questions"] = []
user_input_text = user_input_text.strip() # Remove any trailing space
return state["chat_history"], state["filters"], state["conditions"], state["questions"], state
# Main function to determine whether to extract data or continue chat
def toggle_function(text, state):
if not state["trials_extracted"]:
return extract_data(text, state)
elif state["questions"]:
return handle_chat(text, state)
else:
state["chat_history"].append((text, "Session has ended."))
global user_input_text
user_input_text = " ".join([entry[1] for entry in state["chat_history"] if isinstance(entry[1], str)]).strip()
return state["chat_history"], state["filters"], state["conditions"], state["questions"], state
import pandas as pd
import gradio as gr
def display_recommendations():
global user_input_text, queried_data, global_inclusion_list, global_exclusion_list, global_top_trials
top_trials = recommendation_function_creation(global_inclusion_list, global_exclusion_list, queried_data)
global_top_trials = top_trials
print(f"Top trials: {top_trials}")
print(f"inclusion list: {global_inclusion_list}")
print(f"exclusion list: {global_exclusion_list}")
# Example usage
result_inclusion, result_exclusion = get_highest_similarity_from_top_trials(top_trials)
print(f" the results are vewlwiwjfqowifejoirewoiurhgwegw")
print(result_inclusion)
print(result_exclusion)
# Convert to DataFrame
if isinstance(top_trials, list) and all(isinstance(trial, dict) for trial in top_trials):
top_trials_df = pd.DataFrame(top_trials)
else:
raise ValueError("Top trials is not in the expected list of dictionaries format.")
# Generate graph files
graph_files = []
for idx, trial_id in enumerate(top_trials_df["NCT Number"]): # Assuming "NCT Number" exists
file_name = f"trial_graph_{idx + 1}.html"
create_two_graphs_from_trials(
add_newlines(result_inclusion.get(trial_id, {})),
add_newlines(result_exclusion.get(trial_id, {})),
file_name
)
graph_files.append(file_name)
print(f"inclusions: {global_inclusion_list}")
print(f"exclusions: {global_exclusion_list}")
# Return the DataFrame and list of files
return top_trials_df, graph_files
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
import re
# Load your fine-tuned model from Hugging Face
model_name = "peachfawn/llama3ClinicalTrialFinalFineTuned"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") # Move to CUDA
# Define the Alpaca prompt format
alpaca_prompt = """Below is a study objective that describes a clinical trial. Write an inclusion and exclusion criteria based on the given study objective.
### Study Objective:
{}
### Response (Inclusion and Exclusion Criteria):
{}"""
# Define a function for the Gradio interface
def generate_output(user_input):
# Prepare the input for the model
inputs = tokenizer(
[
alpaca_prompt.format(
user_input, # The input from Gradio
"" # Leave the input section blank for now
)
],
return_tensors="pt"
).to("cuda")
# Use a text streamer to capture the output
text_streamer = TextStreamer(tokenizer)
# Generate text with controlled randomness
generated_output = model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=800,
do_sample=True, # Allow sampling for diversity
top_k=50, # Consider the top 50 tokens for each step
top_p=0.9, # Use nucleus sampling with a threshold of 90%
temperature=0.7 # Temperature to control randomness
)
# Decode the generated text
output_text = tokenizer.decode(generated_output[0], skip_special_tokens=True)
return output_text
# Tab 1: First Gradio Interface (with button visibility control)
summary_text = "Here are the top recommended clinical trials based on your input."
with gr.Blocks() as demo:
with gr.Tab("Criteria Filters"):
# Define input components
condition = gr.Textbox(label="Condition")
term = gr.Textbox(label="Term")
treatment = gr.Textbox(label="Treatment")
study_status = gr.CheckboxGroup(
["Not yet recruiting", "Recruiting", "Active, not recruiting", "Completed", "Terminated",
"Other", "Enrolling by invitation", "Suspended", "Withdrawn", "Unknown"], label="Study Status Filters"
)
age_ranges = gr.CheckboxGroup(
["Child (birth - 17)", "Adult (18 - 64)", "Older adult (65+)"], label="Age Ranges"
)
sex = gr.Radio(["All", "Female", "Male"], label="Sex")
study_phase = gr.CheckboxGroup(
["Early Phase 1", "Phase 1", "Phase 2", "Phase 3", "Phase 4", "Not applicable"], label="Study Phase"
)
study_type = gr.CheckboxGroup(
["Interventional", "Observational", "Patient registries", "Expanded access", "Individual patients",
"Intermediate-size population", "Treatment IND/Protocol"], label="Study Type"
)
study_results = gr.CheckboxGroup(
["With results", "Without results"], label="Study Results"
)
study_documents = gr.CheckboxGroup(
["Study protocols", "Statistical analysis plans", "Informed consent forms"], label="Study Documents"
)
funder_type = gr.CheckboxGroup(
["NIH", "Other U.S. federal agency", "Industry", "All others (individuals, universities, organizations)"], label="Funder Type"
)
trials_per_batch = gr.Slider(1, 100, step=1, label="Number of Trials Per Batch")
# Output text box and buttons
output = gr.Textbox(label="Output")
first_button = gr.Button("Submit")
second_button = gr.Button("Create Inclusion and Exclusion Criteria", visible=False)
# First button triggers processing and shows the second button
first_button.click(
fn=process_page,
inputs=[condition, term, treatment, study_status, age_ranges, sex, study_phase, study_type, study_results, study_documents, funder_type, trials_per_batch],
outputs=[output, second_button]
)
# Second button for additional functionality
second_button.click(fn=process_eligibility_criteria, outputs=output)
# Tab 2: Second Gradio Interface (with chatbot layout)
with gr.Tab("Question Generation & Chatbot"):
extracted_filters = gr.Textbox(label="Extracted Filters")
extracted_conditions = gr.Textbox(label="Extracted Conditions")
generated_questions = gr.Textbox(label="Generated Questions")
chat_output = gr.Chatbot(label="Chat Output")
input_text = gr.Textbox(label="Enter Text")
submit_button = gr.Button("Submit")
reset_button = gr.Button("Reset All")
# Submit button logic to call toggle_function
submit_button.click(
fn=toggle_function,
inputs=[input_text, gr.State(get_initial_state())],
outputs=[chat_output, extracted_filters, extracted_conditions, generated_questions, gr.State(get_initial_state())]
)
# Reset button logic to reset the state
# Third tab to display recommendation results in a tabular format
with gr.Tab("Recommendation Results") as recommendation_tab:
# DataFrame for clinical trials
recommendation_dataframe = gr.DataFrame(label="Clinical Trials Data")
# File output for graph downloads
recommendation_files = gr.File(
label="Download Graph Files",
file_types=[".html"],
type="filepath" # Correct type parameter
)
# Set up the display function for the "Recommendation Results" tab
recommendation_tab.select(
fn=display_recommendations,
inputs=None,
outputs=[recommendation_dataframe, recommendation_files]
)
# Launch the app
# Launch the combined interface
demo.launch(debug=True)
|