Upload CNNExplorer.ipynb
Browse files- CNNExplorer.ipynb +968 -0
CNNExplorer.ipynb
ADDED
@@ -0,0 +1,968 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 33,
|
6 |
+
"id": "5eb63b43-0aff-4a50-9d64-d568bcd8f76a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import cv2\n",
|
13 |
+
"import os\n",
|
14 |
+
"from sklearn.preprocessing import LabelEncoder"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 37,
|
20 |
+
"id": "2ec6794d-f9bd-4768-96c4-6605aba3dba8",
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"from keras.models import Sequential"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 47,
|
30 |
+
"id": "bd92c9fa-2270-43b5-b09f-16b632b1cbe0",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"from keras.layers import Dense,Dropout,Flatten,InputLayer,Conv2D,MaxPooling2D,Flatten"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 9,
|
40 |
+
"id": "ee62cce2-debe-49e2-b81f-9e7e402f8290",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"class_label=pd.read_json(\"C:\\\\Users\\\\DELL\\\\Desktop\\\\cnn-explainer-master\\\\cnn-explainer-master\\\\tiny-vgg\\\\data\\\\data\\\\class_dict_10.json\")"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": 11,
|
50 |
+
"id": "e2dd374d-995b-4560-b0c5-40df1f3126bb",
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"data": {
|
55 |
+
"text/html": [
|
56 |
+
"<div>\n",
|
57 |
+
"<style scoped>\n",
|
58 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
59 |
+
" vertical-align: middle;\n",
|
60 |
+
" }\n",
|
61 |
+
"\n",
|
62 |
+
" .dataframe tbody tr th {\n",
|
63 |
+
" vertical-align: top;\n",
|
64 |
+
" }\n",
|
65 |
+
"\n",
|
66 |
+
" .dataframe thead th {\n",
|
67 |
+
" text-align: right;\n",
|
68 |
+
" }\n",
|
69 |
+
"</style>\n",
|
70 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
71 |
+
" <thead>\n",
|
72 |
+
" <tr style=\"text-align: right;\">\n",
|
73 |
+
" <th></th>\n",
|
74 |
+
" <th>n03662601</th>\n",
|
75 |
+
" <th>n02165456</th>\n",
|
76 |
+
" <th>n07873807</th>\n",
|
77 |
+
" <th>n07720875</th>\n",
|
78 |
+
" <th>n04146614</th>\n",
|
79 |
+
" <th>n01882714</th>\n",
|
80 |
+
" <th>n07920052</th>\n",
|
81 |
+
" <th>n02509815</th>\n",
|
82 |
+
" <th>n07747607</th>\n",
|
83 |
+
" <th>n04285008</th>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" </thead>\n",
|
86 |
+
" <tbody>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>class</th>\n",
|
89 |
+
" <td>lifeboat</td>\n",
|
90 |
+
" <td>ladybug</td>\n",
|
91 |
+
" <td>pizza, pizza pie</td>\n",
|
92 |
+
" <td>bell pepper</td>\n",
|
93 |
+
" <td>school bus</td>\n",
|
94 |
+
" <td>koala</td>\n",
|
95 |
+
" <td>espresso</td>\n",
|
96 |
+
" <td>lesser panda</td>\n",
|
97 |
+
" <td>orange</td>\n",
|
98 |
+
" <td>sports car</td>\n",
|
99 |
+
" </tr>\n",
|
100 |
+
" <tr>\n",
|
101 |
+
" <th>index</th>\n",
|
102 |
+
" <td>0</td>\n",
|
103 |
+
" <td>1</td>\n",
|
104 |
+
" <td>2</td>\n",
|
105 |
+
" <td>3</td>\n",
|
106 |
+
" <td>4</td>\n",
|
107 |
+
" <td>5</td>\n",
|
108 |
+
" <td>6</td>\n",
|
109 |
+
" <td>7</td>\n",
|
110 |
+
" <td>8</td>\n",
|
111 |
+
" <td>9</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" </tbody>\n",
|
114 |
+
"</table>\n",
|
115 |
+
"</div>"
|
116 |
+
],
|
117 |
+
"text/plain": [
|
118 |
+
" n03662601 n02165456 n07873807 n07720875 n04146614 \\\n",
|
119 |
+
"class lifeboat ladybug pizza, pizza pie bell pepper school bus \n",
|
120 |
+
"index 0 1 2 3 4 \n",
|
121 |
+
"\n",
|
122 |
+
" n01882714 n07920052 n02509815 n07747607 n04285008 \n",
|
123 |
+
"class koala espresso lesser panda orange sports car \n",
|
124 |
+
"index 5 6 7 8 9 "
|
125 |
+
]
|
126 |
+
},
|
127 |
+
"execution_count": 11,
|
128 |
+
"metadata": {},
|
129 |
+
"output_type": "execute_result"
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"source": [
|
133 |
+
"class_label"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 81,
|
139 |
+
"id": "2a4e8cd0-94e6-446c-93c1-4b7c3c9984d7",
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [],
|
142 |
+
"source": [
|
143 |
+
"cv=[]\n",
|
144 |
+
"fv=[]\n",
|
145 |
+
"for file in os.listdir(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_train\"):\n",
|
146 |
+
" for img in os.listdir(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_train\\{}\\images\".format(file)):\n",
|
147 |
+
" img=cv2.imread(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_train\\{}\\images\\{}\".format(file,img))\n",
|
148 |
+
" fv.append(img)\n",
|
149 |
+
" cv.append(class_label.loc[\"class\"][file])\n"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": 83,
|
155 |
+
"id": "bf694bc9-5b4f-435f-a0ed-68f374554c2f",
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [
|
158 |
+
{
|
159 |
+
"data": {
|
160 |
+
"text/plain": [
|
161 |
+
"5000"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
"execution_count": 83,
|
165 |
+
"metadata": {},
|
166 |
+
"output_type": "execute_result"
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"len(fv)"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 89,
|
176 |
+
"id": "25c14a98-9baf-4d23-a12c-50ae2f6a07a9",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"final_fv=np.asarray(fv)"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"execution_count": 91,
|
186 |
+
"id": "f163c2e6-0da1-4263-a7a6-37e17f0d39cf",
|
187 |
+
"metadata": {},
|
188 |
+
"outputs": [
|
189 |
+
{
|
190 |
+
"data": {
|
191 |
+
"text/plain": [
|
192 |
+
"array([[[[ 93, 123, 128],\n",
|
193 |
+
" [ 99, 129, 134],\n",
|
194 |
+
" [100, 126, 132],\n",
|
195 |
+
" ...,\n",
|
196 |
+
" [143, 156, 164],\n",
|
197 |
+
" [175, 191, 197],\n",
|
198 |
+
" [ 72, 88, 94]],\n",
|
199 |
+
"\n",
|
200 |
+
" [[ 94, 124, 129],\n",
|
201 |
+
" [ 90, 119, 124],\n",
|
202 |
+
" [109, 135, 141],\n",
|
203 |
+
" ...,\n",
|
204 |
+
" [142, 155, 163],\n",
|
205 |
+
" [161, 177, 183],\n",
|
206 |
+
" [116, 132, 138]],\n",
|
207 |
+
"\n",
|
208 |
+
" [[ 99, 128, 133],\n",
|
209 |
+
" [ 91, 120, 125],\n",
|
210 |
+
" [142, 168, 174],\n",
|
211 |
+
" ...,\n",
|
212 |
+
" [179, 192, 200],\n",
|
213 |
+
" [160, 176, 182],\n",
|
214 |
+
" [ 79, 95, 101]],\n",
|
215 |
+
"\n",
|
216 |
+
" ...,\n",
|
217 |
+
"\n",
|
218 |
+
" [[ 60, 76, 92],\n",
|
219 |
+
" [ 93, 110, 123],\n",
|
220 |
+
" [116, 132, 145],\n",
|
221 |
+
" ...,\n",
|
222 |
+
" [ 32, 58, 98],\n",
|
223 |
+
" [ 15, 40, 82],\n",
|
224 |
+
" [ 46, 74, 115]],\n",
|
225 |
+
"\n",
|
226 |
+
" [[112, 128, 141],\n",
|
227 |
+
" [128, 144, 157],\n",
|
228 |
+
" [132, 145, 159],\n",
|
229 |
+
" ...,\n",
|
230 |
+
" [ 10, 36, 76],\n",
|
231 |
+
" [ 35, 60, 102],\n",
|
232 |
+
" [ 38, 63, 107]],\n",
|
233 |
+
"\n",
|
234 |
+
" [[153, 166, 180],\n",
|
235 |
+
" [152, 165, 179],\n",
|
236 |
+
" [137, 149, 161],\n",
|
237 |
+
" ...,\n",
|
238 |
+
" [ 34, 59, 99],\n",
|
239 |
+
" [ 70, 95, 139],\n",
|
240 |
+
" [ 51, 76, 120]]],\n",
|
241 |
+
"\n",
|
242 |
+
"\n",
|
243 |
+
" [[[ 10, 9, 13],\n",
|
244 |
+
" [ 0, 0, 3],\n",
|
245 |
+
" [ 0, 0, 3],\n",
|
246 |
+
" ...,\n",
|
247 |
+
" [ 61, 83, 118],\n",
|
248 |
+
" [ 47, 73, 110],\n",
|
249 |
+
" [ 63, 89, 129]],\n",
|
250 |
+
"\n",
|
251 |
+
" [[ 25, 24, 28],\n",
|
252 |
+
" [ 3, 2, 4],\n",
|
253 |
+
" [ 4, 3, 7],\n",
|
254 |
+
" ...,\n",
|
255 |
+
" [ 66, 89, 121],\n",
|
256 |
+
" [ 59, 85, 122],\n",
|
257 |
+
" [ 66, 93, 130]],\n",
|
258 |
+
"\n",
|
259 |
+
" [[ 66, 63, 65],\n",
|
260 |
+
" [ 66, 64, 64],\n",
|
261 |
+
" [ 36, 33, 35],\n",
|
262 |
+
" ...,\n",
|
263 |
+
" [ 67, 88, 119],\n",
|
264 |
+
" [ 73, 97, 133],\n",
|
265 |
+
" [ 95, 121, 157]],\n",
|
266 |
+
"\n",
|
267 |
+
" ...,\n",
|
268 |
+
"\n",
|
269 |
+
" [[ 75, 87, 115],\n",
|
270 |
+
" [ 97, 108, 135],\n",
|
271 |
+
" [ 58, 68, 92],\n",
|
272 |
+
" ...,\n",
|
273 |
+
" [ 45, 65, 96],\n",
|
274 |
+
" [ 86, 100, 122],\n",
|
275 |
+
" [ 72, 84, 102]],\n",
|
276 |
+
"\n",
|
277 |
+
" [[ 79, 94, 126],\n",
|
278 |
+
" [ 87, 101, 130],\n",
|
279 |
+
" [ 32, 44, 72],\n",
|
280 |
+
" ...,\n",
|
281 |
+
" [ 47, 64, 91],\n",
|
282 |
+
" [ 92, 104, 122],\n",
|
283 |
+
" [ 66, 78, 90]],\n",
|
284 |
+
"\n",
|
285 |
+
" [[ 41, 58, 91],\n",
|
286 |
+
" [ 77, 92, 124],\n",
|
287 |
+
" [ 71, 85, 114],\n",
|
288 |
+
" ...,\n",
|
289 |
+
" [ 31, 47, 70],\n",
|
290 |
+
" [ 85, 98, 114],\n",
|
291 |
+
" [ 71, 81, 91]]],\n",
|
292 |
+
"\n",
|
293 |
+
"\n",
|
294 |
+
" [[[ 28, 34, 53],\n",
|
295 |
+
" [ 0, 4, 23],\n",
|
296 |
+
" [ 0, 7, 27],\n",
|
297 |
+
" ...,\n",
|
298 |
+
" [119, 136, 163],\n",
|
299 |
+
" [109, 123, 151],\n",
|
300 |
+
" [ 98, 112, 140]],\n",
|
301 |
+
"\n",
|
302 |
+
" [[ 71, 75, 94],\n",
|
303 |
+
" [ 11, 17, 36],\n",
|
304 |
+
" [ 0, 4, 23],\n",
|
305 |
+
" ...,\n",
|
306 |
+
" [136, 153, 180],\n",
|
307 |
+
" [136, 150, 178],\n",
|
308 |
+
" [124, 138, 166]],\n",
|
309 |
+
"\n",
|
310 |
+
" [[ 10, 12, 30],\n",
|
311 |
+
" [ 8, 12, 30],\n",
|
312 |
+
" [ 0, 0, 16],\n",
|
313 |
+
" ...,\n",
|
314 |
+
" [111, 128, 154],\n",
|
315 |
+
" [125, 140, 166],\n",
|
316 |
+
" [117, 132, 158]],\n",
|
317 |
+
"\n",
|
318 |
+
" ...,\n",
|
319 |
+
"\n",
|
320 |
+
" [[ 66, 79, 123],\n",
|
321 |
+
" [ 88, 101, 147],\n",
|
322 |
+
" [ 69, 80, 132],\n",
|
323 |
+
" ...,\n",
|
324 |
+
" [ 80, 100, 155],\n",
|
325 |
+
" [101, 122, 174],\n",
|
326 |
+
" [ 89, 110, 161]],\n",
|
327 |
+
"\n",
|
328 |
+
" [[ 42, 55, 99],\n",
|
329 |
+
" [ 37, 50, 96],\n",
|
330 |
+
" [ 66, 77, 129],\n",
|
331 |
+
" ...,\n",
|
332 |
+
" [121, 141, 198],\n",
|
333 |
+
" [ 91, 112, 167],\n",
|
334 |
+
" [ 81, 103, 155]],\n",
|
335 |
+
"\n",
|
336 |
+
" [[ 50, 63, 107],\n",
|
337 |
+
" [ 43, 56, 102],\n",
|
338 |
+
" [ 85, 96, 148],\n",
|
339 |
+
" ...,\n",
|
340 |
+
" [ 60, 82, 140],\n",
|
341 |
+
" [112, 135, 191],\n",
|
342 |
+
" [ 95, 119, 173]]],\n",
|
343 |
+
"\n",
|
344 |
+
"\n",
|
345 |
+
" ...,\n",
|
346 |
+
"\n",
|
347 |
+
"\n",
|
348 |
+
" [[[ 92, 100, 113],\n",
|
349 |
+
" [115, 124, 134],\n",
|
350 |
+
" [148, 153, 162],\n",
|
351 |
+
" ...,\n",
|
352 |
+
" [133, 140, 133],\n",
|
353 |
+
" [134, 138, 132],\n",
|
354 |
+
" [134, 138, 132]],\n",
|
355 |
+
"\n",
|
356 |
+
" [[155, 159, 170],\n",
|
357 |
+
" [164, 166, 177],\n",
|
358 |
+
" [173, 176, 184],\n",
|
359 |
+
" ...,\n",
|
360 |
+
" [138, 145, 138],\n",
|
361 |
+
" [140, 144, 138],\n",
|
362 |
+
" [142, 146, 140]],\n",
|
363 |
+
"\n",
|
364 |
+
" [[192, 186, 197],\n",
|
365 |
+
" [189, 184, 193],\n",
|
366 |
+
" [187, 183, 189],\n",
|
367 |
+
" ...,\n",
|
368 |
+
" [138, 144, 139],\n",
|
369 |
+
" [139, 145, 140],\n",
|
370 |
+
" [140, 146, 141]],\n",
|
371 |
+
"\n",
|
372 |
+
" ...,\n",
|
373 |
+
"\n",
|
374 |
+
" [[140, 160, 161],\n",
|
375 |
+
" [142, 162, 163],\n",
|
376 |
+
" [142, 160, 161],\n",
|
377 |
+
" ...,\n",
|
378 |
+
" [173, 175, 175],\n",
|
379 |
+
" [173, 175, 175],\n",
|
380 |
+
" [173, 175, 175]],\n",
|
381 |
+
"\n",
|
382 |
+
" [[131, 151, 152],\n",
|
383 |
+
" [132, 152, 153],\n",
|
384 |
+
" [134, 152, 153],\n",
|
385 |
+
" ...,\n",
|
386 |
+
" [173, 175, 175],\n",
|
387 |
+
" [172, 174, 174],\n",
|
388 |
+
" [172, 174, 174]],\n",
|
389 |
+
"\n",
|
390 |
+
" [[120, 140, 141],\n",
|
391 |
+
" [121, 141, 142],\n",
|
392 |
+
" [127, 145, 146],\n",
|
393 |
+
" ...,\n",
|
394 |
+
" [172, 174, 174],\n",
|
395 |
+
" [172, 174, 174],\n",
|
396 |
+
" [171, 173, 173]]],\n",
|
397 |
+
"\n",
|
398 |
+
"\n",
|
399 |
+
" [[[133, 146, 144],\n",
|
400 |
+
" [130, 143, 141],\n",
|
401 |
+
" [128, 142, 138],\n",
|
402 |
+
" ...,\n",
|
403 |
+
" [142, 142, 142],\n",
|
404 |
+
" [155, 154, 156],\n",
|
405 |
+
" [132, 131, 133]],\n",
|
406 |
+
"\n",
|
407 |
+
" [[122, 135, 133],\n",
|
408 |
+
" [149, 163, 159],\n",
|
409 |
+
" [136, 150, 146],\n",
|
410 |
+
" ...,\n",
|
411 |
+
" [130, 130, 130],\n",
|
412 |
+
" [144, 143, 145],\n",
|
413 |
+
" [154, 153, 155]],\n",
|
414 |
+
"\n",
|
415 |
+
" [[133, 147, 143],\n",
|
416 |
+
" [ 18, 32, 28],\n",
|
417 |
+
" [108, 122, 118],\n",
|
418 |
+
" ...,\n",
|
419 |
+
" [155, 158, 156],\n",
|
420 |
+
" [133, 135, 135],\n",
|
421 |
+
" [145, 147, 147]],\n",
|
422 |
+
"\n",
|
423 |
+
" ...,\n",
|
424 |
+
"\n",
|
425 |
+
" [[ 41, 40, 50],\n",
|
426 |
+
" [ 28, 29, 39],\n",
|
427 |
+
" [ 17, 18, 28],\n",
|
428 |
+
" ...,\n",
|
429 |
+
" [134, 142, 142],\n",
|
430 |
+
" [165, 173, 173],\n",
|
431 |
+
" [202, 210, 210]],\n",
|
432 |
+
"\n",
|
433 |
+
" [[ 37, 33, 44],\n",
|
434 |
+
" [ 31, 30, 40],\n",
|
435 |
+
" [ 29, 28, 38],\n",
|
436 |
+
" ...,\n",
|
437 |
+
" [149, 157, 157],\n",
|
438 |
+
" [166, 174, 174],\n",
|
439 |
+
" [209, 217, 217]],\n",
|
440 |
+
"\n",
|
441 |
+
" [[ 42, 38, 49],\n",
|
442 |
+
" [ 39, 35, 46],\n",
|
443 |
+
" [ 36, 35, 45],\n",
|
444 |
+
" ...,\n",
|
445 |
+
" [119, 127, 127],\n",
|
446 |
+
" [172, 180, 180],\n",
|
447 |
+
" [173, 181, 181]]],\n",
|
448 |
+
"\n",
|
449 |
+
"\n",
|
450 |
+
" [[[ 26, 16, 9],\n",
|
451 |
+
" [ 25, 16, 12],\n",
|
452 |
+
" [ 32, 27, 28],\n",
|
453 |
+
" ...,\n",
|
454 |
+
" [ 35, 16, 13],\n",
|
455 |
+
" [ 34, 13, 11],\n",
|
456 |
+
" [ 33, 12, 10]],\n",
|
457 |
+
"\n",
|
458 |
+
" [[ 26, 16, 9],\n",
|
459 |
+
" [ 25, 16, 12],\n",
|
460 |
+
" [ 32, 27, 28],\n",
|
461 |
+
" ...,\n",
|
462 |
+
" [ 37, 18, 15],\n",
|
463 |
+
" [ 34, 13, 11],\n",
|
464 |
+
" [ 32, 11, 9]],\n",
|
465 |
+
"\n",
|
466 |
+
" [[ 25, 15, 8],\n",
|
467 |
+
" [ 24, 15, 11],\n",
|
468 |
+
" [ 32, 27, 28],\n",
|
469 |
+
" ...,\n",
|
470 |
+
" [ 39, 20, 17],\n",
|
471 |
+
" [ 35, 14, 12],\n",
|
472 |
+
" [ 32, 11, 9]],\n",
|
473 |
+
"\n",
|
474 |
+
" ...,\n",
|
475 |
+
"\n",
|
476 |
+
" [[ 28, 9, 4],\n",
|
477 |
+
" [ 20, 4, 0],\n",
|
478 |
+
" [ 26, 10, 4],\n",
|
479 |
+
" ...,\n",
|
480 |
+
" [ 86, 82, 57],\n",
|
481 |
+
" [ 88, 87, 59],\n",
|
482 |
+
" [ 83, 82, 54]],\n",
|
483 |
+
"\n",
|
484 |
+
" [[ 33, 15, 8],\n",
|
485 |
+
" [ 16, 0, 0],\n",
|
486 |
+
" [ 25, 9, 3],\n",
|
487 |
+
" ...,\n",
|
488 |
+
" [ 80, 85, 56],\n",
|
489 |
+
" [ 84, 92, 62],\n",
|
490 |
+
" [ 71, 81, 51]],\n",
|
491 |
+
"\n",
|
492 |
+
" [[ 32, 14, 7],\n",
|
493 |
+
" [ 16, 0, 0],\n",
|
494 |
+
" [ 30, 14, 8],\n",
|
495 |
+
" ...,\n",
|
496 |
+
" [ 74, 86, 56],\n",
|
497 |
+
" [ 83, 95, 65],\n",
|
498 |
+
" [ 66, 81, 50]]]], dtype=uint8)"
|
499 |
+
]
|
500 |
+
},
|
501 |
+
"execution_count": 91,
|
502 |
+
"metadata": {},
|
503 |
+
"output_type": "execute_result"
|
504 |
+
}
|
505 |
+
],
|
506 |
+
"source": [
|
507 |
+
"final_fv"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"cell_type": "code",
|
512 |
+
"execution_count": 93,
|
513 |
+
"id": "23bad3e7-6026-4ce1-a629-ec12d48e3c57",
|
514 |
+
"metadata": {},
|
515 |
+
"outputs": [],
|
516 |
+
"source": [
|
517 |
+
"le=LabelEncoder()\n",
|
518 |
+
"final_cv=le.fit_transform(cv)"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "code",
|
523 |
+
"execution_count": 117,
|
524 |
+
"id": "2f2abaff-b6fa-4a92-8ef9-c48aae150bf8",
|
525 |
+
"metadata": {},
|
526 |
+
"outputs": [
|
527 |
+
{
|
528 |
+
"data": {
|
529 |
+
"text/plain": [
|
530 |
+
"(5000, 64, 64, 3)"
|
531 |
+
]
|
532 |
+
},
|
533 |
+
"execution_count": 117,
|
534 |
+
"metadata": {},
|
535 |
+
"output_type": "execute_result"
|
536 |
+
}
|
537 |
+
],
|
538 |
+
"source": [
|
539 |
+
"final_fv.shape"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"cell_type": "code",
|
544 |
+
"execution_count": 95,
|
545 |
+
"id": "47b447df-9923-4229-b956-37a0cb93be0f",
|
546 |
+
"metadata": {},
|
547 |
+
"outputs": [
|
548 |
+
{
|
549 |
+
"name": "stderr",
|
550 |
+
"output_type": "stream",
|
551 |
+
"text": [
|
552 |
+
"C:\\Users\\DELL\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\core\\input_layer.py:27: UserWarning: Argument `input_shape` is deprecated. Use `shape` instead.\n",
|
553 |
+
" warnings.warn(\n"
|
554 |
+
]
|
555 |
+
}
|
556 |
+
],
|
557 |
+
"source": [
|
558 |
+
"model=Sequential()\n",
|
559 |
+
"model.add(InputLayer(input_shape=(64,64,3)))\n",
|
560 |
+
"\n",
|
561 |
+
"model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
|
562 |
+
"\n",
|
563 |
+
"model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
|
564 |
+
"model.add(MaxPooling2D((2,2),strides=(2,2),padding=\"valid\"))\n",
|
565 |
+
"\n",
|
566 |
+
"model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
|
567 |
+
"\n",
|
568 |
+
"model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
|
569 |
+
"model.add(MaxPooling2D((2,2),strides=(2,2),padding=\"valid\"))\n",
|
570 |
+
"\n",
|
571 |
+
"model.add(Flatten())\n",
|
572 |
+
"\n",
|
573 |
+
"model.add(Dense(10,activation=\"softmax\"))\n",
|
574 |
+
"\n",
|
575 |
+
"\n",
|
576 |
+
"\n"
|
577 |
+
]
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "code",
|
581 |
+
"execution_count": 97,
|
582 |
+
"id": "60ac58fd-1da6-4ca2-bcb8-8e20af4fd654",
|
583 |
+
"metadata": {},
|
584 |
+
"outputs": [
|
585 |
+
{
|
586 |
+
"data": {
|
587 |
+
"text/html": [
|
588 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_3\"</span>\n",
|
589 |
+
"</pre>\n"
|
590 |
+
],
|
591 |
+
"text/plain": [
|
592 |
+
"\u001b[1mModel: \"sequential_3\"\u001b[0m\n"
|
593 |
+
]
|
594 |
+
},
|
595 |
+
"metadata": {},
|
596 |
+
"output_type": "display_data"
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"data": {
|
600 |
+
"text/html": [
|
601 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">ββββββββββββββββββββββββββββββββββββββββ³ββββββββββββββββββββββββββββββ³ββββββββββββββββββ\n",
|
602 |
+
"β<span style=\"font-weight: bold\"> Layer (type) </span>β<span style=\"font-weight: bold\"> Output Shape </span>β<span style=\"font-weight: bold\"> Param # </span>β\n",
|
603 |
+
"β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
604 |
+
"β conv2d_6 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">62</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">62</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">280</span> β\n",
|
605 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
606 |
+
"β conv2d_7 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">910</span> β\n",
|
607 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
608 |
+
"β max_pooling2d_2 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β\n",
|
609 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
610 |
+
"β conv2d_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">910</span> β\n",
|
611 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
612 |
+
"β conv2d_9 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">26</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">26</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">910</span> β\n",
|
613 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
614 |
+
"β max_pooling2d_3 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">13</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">13</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β\n",
|
615 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
616 |
+
"β flatten_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Flatten</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">1690</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β\n",
|
617 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
618 |
+
"β dense_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">16,910</span> β\n",
|
619 |
+
"ββββββββββββββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββββ΄ββββββββββββββββββ\n",
|
620 |
+
"</pre>\n"
|
621 |
+
],
|
622 |
+
"text/plain": [
|
623 |
+
"ββββββββββββββββββββββββββββββββββββββββ³ββββββββββββββββββββββββββββββ³ββββββββββββββββββ\n",
|
624 |
+
"β\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mβ\n",
|
625 |
+
"β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
626 |
+
"β conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m62\u001b[0m, \u001b[38;5;34m62\u001b[0m, \u001b[38;5;34m10\u001b[0m) β \u001b[38;5;34m280\u001b[0m β\n",
|
627 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
628 |
+
"β conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m60\u001b[0m, \u001b[38;5;34m60\u001b[0m, \u001b[38;5;34m10\u001b[0m) β \u001b[38;5;34m910\u001b[0m β\n",
|
629 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
630 |
+
"β max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m10\u001b[0m) β \u001b[38;5;34m0\u001b[0m β\n",
|
631 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
632 |
+
"β conv2d_8 (\u001b[38;5;33mConv2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m10\u001b[0m) β \u001b[38;5;34m910\u001b[0m β\n",
|
633 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
634 |
+
"β conv2d_9 (\u001b[38;5;33mConv2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m10\u001b[0m) β \u001b[38;5;34m910\u001b[0m β\n",
|
635 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
636 |
+
"β max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m10\u001b[0m) β \u001b[38;5;34m0\u001b[0m β\n",
|
637 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
638 |
+
"β flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1690\u001b[0m) β \u001b[38;5;34m0\u001b[0m β\n",
|
639 |
+
"ββββββββββββββββββββββββββββββββββββββββΌββββββββββββββββββββββββββββββΌββββββββββββββββββ€\n",
|
640 |
+
"β dense_1 (\u001b[38;5;33mDense\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) β \u001b[38;5;34m16,910\u001b[0m β\n",
|
641 |
+
"ββββββββββββββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββββ΄ββββββββββββββββββ\n"
|
642 |
+
]
|
643 |
+
},
|
644 |
+
"metadata": {},
|
645 |
+
"output_type": "display_data"
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"data": {
|
649 |
+
"text/html": [
|
650 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">19,920</span> (77.81 KB)\n",
|
651 |
+
"</pre>\n"
|
652 |
+
],
|
653 |
+
"text/plain": [
|
654 |
+
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m19,920\u001b[0m (77.81 KB)\n"
|
655 |
+
]
|
656 |
+
},
|
657 |
+
"metadata": {},
|
658 |
+
"output_type": "display_data"
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"data": {
|
662 |
+
"text/html": [
|
663 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">19,920</span> (77.81 KB)\n",
|
664 |
+
"</pre>\n"
|
665 |
+
],
|
666 |
+
"text/plain": [
|
667 |
+
"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m19,920\u001b[0m (77.81 KB)\n"
|
668 |
+
]
|
669 |
+
},
|
670 |
+
"metadata": {},
|
671 |
+
"output_type": "display_data"
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"data": {
|
675 |
+
"text/html": [
|
676 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
|
677 |
+
"</pre>\n"
|
678 |
+
],
|
679 |
+
"text/plain": [
|
680 |
+
"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
|
681 |
+
]
|
682 |
+
},
|
683 |
+
"metadata": {},
|
684 |
+
"output_type": "display_data"
|
685 |
+
}
|
686 |
+
],
|
687 |
+
"source": [
|
688 |
+
"model.summary()"
|
689 |
+
]
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"cell_type": "code",
|
693 |
+
"execution_count": 99,
|
694 |
+
"id": "ab6f9579-a47d-4463-914f-5d2cebbb617f",
|
695 |
+
"metadata": {},
|
696 |
+
"outputs": [
|
697 |
+
{
|
698 |
+
"data": {
|
699 |
+
"text/plain": [
|
700 |
+
"19920"
|
701 |
+
]
|
702 |
+
},
|
703 |
+
"execution_count": 99,
|
704 |
+
"metadata": {},
|
705 |
+
"output_type": "execute_result"
|
706 |
+
}
|
707 |
+
],
|
708 |
+
"source": [
|
709 |
+
"16900+(280)+(910*3)+10"
|
710 |
+
]
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"cell_type": "code",
|
714 |
+
"execution_count": 101,
|
715 |
+
"id": "0be3eeba-a46b-4eea-bc96-f2c744a7bb7c",
|
716 |
+
"metadata": {},
|
717 |
+
"outputs": [],
|
718 |
+
"source": [
|
719 |
+
"model.compile(optimizer=\"adam\",loss=\"sparse_categorical_crossentropy\",metrics=[\"accuracy\"])"
|
720 |
+
]
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"cell_type": "code",
|
724 |
+
"execution_count": 103,
|
725 |
+
"id": "40e68fd9-bd57-4542-ab64-8ce9e1441f3e",
|
726 |
+
"metadata": {},
|
727 |
+
"outputs": [
|
728 |
+
{
|
729 |
+
"name": "stdout",
|
730 |
+
"output_type": "stream",
|
731 |
+
"text": [
|
732 |
+
"Epoch 1/30\n",
|
733 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 23ms/step - accuracy: 0.2080 - loss: 4.6804 - val_accuracy: 0.0000e+00 - val_loss: 19.1830\n",
|
734 |
+
"Epoch 2/30\n",
|
735 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.3782 - loss: 1.6260 - val_accuracy: 0.0000e+00 - val_loss: 26.0851\n",
|
736 |
+
"Epoch 3/30\n",
|
737 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.5056 - loss: 1.3495 - val_accuracy: 0.0000e+00 - val_loss: 41.0336\n",
|
738 |
+
"Epoch 4/30\n",
|
739 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.6231 - loss: 1.0457 - val_accuracy: 0.0000e+00 - val_loss: 40.3504\n",
|
740 |
+
"Epoch 5/30\n",
|
741 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.6812 - loss: 0.9255 - val_accuracy: 0.0000e+00 - val_loss: 52.1076\n",
|
742 |
+
"Epoch 6/30\n",
|
743 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 20ms/step - accuracy: 0.7157 - loss: 0.8099 - val_accuracy: 0.0000e+00 - val_loss: 50.8672\n",
|
744 |
+
"Epoch 7/30\n",
|
745 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.7648 - loss: 0.6788 - val_accuracy: 0.0000e+00 - val_loss: 52.5935\n",
|
746 |
+
"Epoch 8/30\n",
|
747 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.7743 - loss: 0.6353 - val_accuracy: 0.0000e+00 - val_loss: 59.4032\n",
|
748 |
+
"Epoch 9/30\n",
|
749 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8113 - loss: 0.5625 - val_accuracy: 0.0000e+00 - val_loss: 56.3095\n",
|
750 |
+
"Epoch 10/30\n",
|
751 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8503 - loss: 0.4576 - val_accuracy: 0.0000e+00 - val_loss: 60.5619\n",
|
752 |
+
"Epoch 11/30\n",
|
753 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8718 - loss: 0.4068 - val_accuracy: 0.0000e+00 - val_loss: 67.3940\n",
|
754 |
+
"Epoch 12/30\n",
|
755 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8908 - loss: 0.3511 - val_accuracy: 0.0000e+00 - val_loss: 73.8187\n",
|
756 |
+
"Epoch 13/30\n",
|
757 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9020 - loss: 0.2951 - val_accuracy: 0.0000e+00 - val_loss: 72.3385\n",
|
758 |
+
"Epoch 14/30\n",
|
759 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.9145 - loss: 0.2679 - val_accuracy: 0.0000e+00 - val_loss: 80.5521\n",
|
760 |
+
"Epoch 15/30\n",
|
761 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.9059 - loss: 0.2770 - val_accuracy: 0.0000e+00 - val_loss: 90.8833\n",
|
762 |
+
"Epoch 16/30\n",
|
763 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9445 - loss: 0.1843 - val_accuracy: 0.0000e+00 - val_loss: 95.8095\n",
|
764 |
+
"Epoch 17/30\n",
|
765 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 20ms/step - accuracy: 0.9568 - loss: 0.1523 - val_accuracy: 0.0000e+00 - val_loss: 102.6003\n",
|
766 |
+
"Epoch 18/30\n",
|
767 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9580 - loss: 0.1363 - val_accuracy: 0.0000e+00 - val_loss: 101.0709\n",
|
768 |
+
"Epoch 19/30\n",
|
769 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9502 - loss: 0.1436 - val_accuracy: 0.0000e+00 - val_loss: 100.0361\n",
|
770 |
+
"Epoch 20/30\n",
|
771 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 23ms/step - accuracy: 0.9425 - loss: 0.1797 - val_accuracy: 0.0000e+00 - val_loss: 108.6705\n",
|
772 |
+
"Epoch 21/30\n",
|
773 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9640 - loss: 0.1122 - val_accuracy: 0.0000e+00 - val_loss: 101.3856\n",
|
774 |
+
"Epoch 22/30\n",
|
775 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9602 - loss: 0.1128 - val_accuracy: 0.0000e+00 - val_loss: 106.5760\n",
|
776 |
+
"Epoch 23/30\n",
|
777 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9660 - loss: 0.1010 - val_accuracy: 0.0000e+00 - val_loss: 117.6791\n",
|
778 |
+
"Epoch 24/30\n",
|
779 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9628 - loss: 0.1130 - val_accuracy: 0.0000e+00 - val_loss: 110.5023\n",
|
780 |
+
"Epoch 25/30\n",
|
781 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9647 - loss: 0.1049 - val_accuracy: 0.0000e+00 - val_loss: 111.2337\n",
|
782 |
+
"Epoch 26/30\n",
|
783 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9792 - loss: 0.0657 - val_accuracy: 0.0000e+00 - val_loss: 124.0935\n",
|
784 |
+
"Epoch 27/30\n",
|
785 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9763 - loss: 0.0807 - val_accuracy: 0.0000e+00 - val_loss: 123.4486\n",
|
786 |
+
"Epoch 28/30\n",
|
787 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.9643 - loss: 0.1042 - val_accuracy: 0.0000e+00 - val_loss: 115.8864\n",
|
788 |
+
"Epoch 29/30\n",
|
789 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9656 - loss: 0.1140 - val_accuracy: 0.0000e+00 - val_loss: 106.3280\n",
|
790 |
+
"Epoch 30/30\n",
|
791 |
+
"\u001b[1m125/125\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9605 - loss: 0.1465 - val_accuracy: 0.0000e+00 - val_loss: 127.4334\n"
|
792 |
+
]
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"data": {
|
796 |
+
"text/plain": [
|
797 |
+
"<keras.src.callbacks.history.History at 0x14e2460cd90>"
|
798 |
+
]
|
799 |
+
},
|
800 |
+
"execution_count": 103,
|
801 |
+
"metadata": {},
|
802 |
+
"output_type": "execute_result"
|
803 |
+
}
|
804 |
+
],
|
805 |
+
"source": [
|
806 |
+
"model.fit(final_fv,final_cv,epochs=30,batch_size=32,validation_split=0.2)"
|
807 |
+
]
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"cell_type": "code",
|
811 |
+
"execution_count": 105,
|
812 |
+
"id": "da3a460f-aa3f-4703-9b94-9fd99f4f9e29",
|
813 |
+
"metadata": {},
|
814 |
+
"outputs": [
|
815 |
+
{
|
816 |
+
"data": {
|
817 |
+
"text/plain": [
|
818 |
+
"<Sequential name=sequential_3, built=True>"
|
819 |
+
]
|
820 |
+
},
|
821 |
+
"execution_count": 105,
|
822 |
+
"metadata": {},
|
823 |
+
"output_type": "execute_result"
|
824 |
+
}
|
825 |
+
],
|
826 |
+
"source": [
|
827 |
+
"model"
|
828 |
+
]
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"cell_type": "code",
|
832 |
+
"execution_count": 109,
|
833 |
+
"id": "a8ca2658-6f2d-4104-97be-044453bebe80",
|
834 |
+
"metadata": {},
|
835 |
+
"outputs": [],
|
836 |
+
"source": [
|
837 |
+
"img1=cv2.imread(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_val\\val_images\\val_47.JPEG\")"
|
838 |
+
]
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"cell_type": "code",
|
842 |
+
"execution_count": 111,
|
843 |
+
"id": "dcb1bcd0-5007-41d9-8db4-2d61b2d03b1a",
|
844 |
+
"metadata": {},
|
845 |
+
"outputs": [
|
846 |
+
{
|
847 |
+
"data": {
|
848 |
+
"text/plain": [
|
849 |
+
"(64, 64, 3)"
|
850 |
+
]
|
851 |
+
},
|
852 |
+
"execution_count": 111,
|
853 |
+
"metadata": {},
|
854 |
+
"output_type": "execute_result"
|
855 |
+
}
|
856 |
+
],
|
857 |
+
"source": [
|
858 |
+
"img1.shape"
|
859 |
+
]
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"cell_type": "code",
|
863 |
+
"execution_count": 119,
|
864 |
+
"id": "67a53bb1-e593-4160-8487-71afa37ab006",
|
865 |
+
"metadata": {},
|
866 |
+
"outputs": [
|
867 |
+
{
|
868 |
+
"data": {
|
869 |
+
"text/plain": [
|
870 |
+
"(1, 64, 64, 3)"
|
871 |
+
]
|
872 |
+
},
|
873 |
+
"execution_count": 119,
|
874 |
+
"metadata": {},
|
875 |
+
"output_type": "execute_result"
|
876 |
+
}
|
877 |
+
],
|
878 |
+
"source": [
|
879 |
+
"img1[np.newaxis,:,:,:].shape"
|
880 |
+
]
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"cell_type": "code",
|
884 |
+
"execution_count": 123,
|
885 |
+
"id": "396e6e07-7036-4956-9663-adabf5475eb6",
|
886 |
+
"metadata": {},
|
887 |
+
"outputs": [
|
888 |
+
{
|
889 |
+
"name": "stdout",
|
890 |
+
"output_type": "stream",
|
891 |
+
"text": [
|
892 |
+
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 287ms/step\n"
|
893 |
+
]
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"data": {
|
897 |
+
"text/plain": [
|
898 |
+
"0"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
"execution_count": 123,
|
902 |
+
"metadata": {},
|
903 |
+
"output_type": "execute_result"
|
904 |
+
}
|
905 |
+
],
|
906 |
+
"source": [
|
907 |
+
"np.argmax(model.predict(img1[np.newaxis,:,:,:]))"
|
908 |
+
]
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"cell_type": "code",
|
912 |
+
"execution_count": 125,
|
913 |
+
"id": "3092204e-efb8-49fd-b578-43ccc1e60e67",
|
914 |
+
"metadata": {},
|
915 |
+
"outputs": [
|
916 |
+
{
|
917 |
+
"name": "stdout",
|
918 |
+
"output_type": "stream",
|
919 |
+
"text": [
|
920 |
+
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step\n"
|
921 |
+
]
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"data": {
|
925 |
+
"text/plain": [
|
926 |
+
"array(['bell pepper'], dtype='<U16')"
|
927 |
+
]
|
928 |
+
},
|
929 |
+
"execution_count": 125,
|
930 |
+
"metadata": {},
|
931 |
+
"output_type": "execute_result"
|
932 |
+
}
|
933 |
+
],
|
934 |
+
"source": [
|
935 |
+
"le.inverse_transform([np.argmax(model.predict(img1[np.newaxis,:,:,:]))])"
|
936 |
+
]
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"cell_type": "code",
|
940 |
+
"execution_count": null,
|
941 |
+
"id": "42a6a30b-9ad4-451b-a63e-49e61b9c4721",
|
942 |
+
"metadata": {},
|
943 |
+
"outputs": [],
|
944 |
+
"source": []
|
945 |
+
}
|
946 |
+
],
|
947 |
+
"metadata": {
|
948 |
+
"kernelspec": {
|
949 |
+
"display_name": "Python 3 (ipykernel)",
|
950 |
+
"language": "python",
|
951 |
+
"name": "python3"
|
952 |
+
},
|
953 |
+
"language_info": {
|
954 |
+
"codemirror_mode": {
|
955 |
+
"name": "ipython",
|
956 |
+
"version": 3
|
957 |
+
},
|
958 |
+
"file_extension": ".py",
|
959 |
+
"mimetype": "text/x-python",
|
960 |
+
"name": "python",
|
961 |
+
"nbconvert_exporter": "python",
|
962 |
+
"pygments_lexer": "ipython3",
|
963 |
+
"version": "3.11.7"
|
964 |
+
}
|
965 |
+
},
|
966 |
+
"nbformat": 4,
|
967 |
+
"nbformat_minor": 5
|
968 |
+
}
|