pavuluriashwitha commited on
Commit
c788cc9
·
verified ·
1 Parent(s): 95cd665

Delete Untitled37.ipynb

Browse files
Files changed (1) hide show
  1. Untitled37.ipynb +0 -968
Untitled37.ipynb DELETED
@@ -1,968 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 33,
6
- "id": "5eb63b43-0aff-4a50-9d64-d568bcd8f76a",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import cv2\n",
13
- "import os\n",
14
- "from sklearn.preprocessing import LabelEncoder"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": 37,
20
- "id": "2ec6794d-f9bd-4768-96c4-6605aba3dba8",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "from keras.models import Sequential"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": 47,
30
- "id": "bd92c9fa-2270-43b5-b09f-16b632b1cbe0",
31
- "metadata": {},
32
- "outputs": [],
33
- "source": [
34
- "from keras.layers import Dense,Dropout,Flatten,InputLayer,Conv2D,MaxPooling2D,Flatten"
35
- ]
36
- },
37
- {
38
- "cell_type": "code",
39
- "execution_count": 9,
40
- "id": "ee62cce2-debe-49e2-b81f-9e7e402f8290",
41
- "metadata": {},
42
- "outputs": [],
43
- "source": [
44
- "class_label=pd.read_json(\"C:\\\\Users\\\\DELL\\\\Desktop\\\\cnn-explainer-master\\\\cnn-explainer-master\\\\tiny-vgg\\\\data\\\\data\\\\class_dict_10.json\")"
45
- ]
46
- },
47
- {
48
- "cell_type": "code",
49
- "execution_count": 11,
50
- "id": "e2dd374d-995b-4560-b0c5-40df1f3126bb",
51
- "metadata": {},
52
- "outputs": [
53
- {
54
- "data": {
55
- "text/html": [
56
- "<div>\n",
57
- "<style scoped>\n",
58
- " .dataframe tbody tr th:only-of-type {\n",
59
- " vertical-align: middle;\n",
60
- " }\n",
61
- "\n",
62
- " .dataframe tbody tr th {\n",
63
- " vertical-align: top;\n",
64
- " }\n",
65
- "\n",
66
- " .dataframe thead th {\n",
67
- " text-align: right;\n",
68
- " }\n",
69
- "</style>\n",
70
- "<table border=\"1\" class=\"dataframe\">\n",
71
- " <thead>\n",
72
- " <tr style=\"text-align: right;\">\n",
73
- " <th></th>\n",
74
- " <th>n03662601</th>\n",
75
- " <th>n02165456</th>\n",
76
- " <th>n07873807</th>\n",
77
- " <th>n07720875</th>\n",
78
- " <th>n04146614</th>\n",
79
- " <th>n01882714</th>\n",
80
- " <th>n07920052</th>\n",
81
- " <th>n02509815</th>\n",
82
- " <th>n07747607</th>\n",
83
- " <th>n04285008</th>\n",
84
- " </tr>\n",
85
- " </thead>\n",
86
- " <tbody>\n",
87
- " <tr>\n",
88
- " <th>class</th>\n",
89
- " <td>lifeboat</td>\n",
90
- " <td>ladybug</td>\n",
91
- " <td>pizza, pizza pie</td>\n",
92
- " <td>bell pepper</td>\n",
93
- " <td>school bus</td>\n",
94
- " <td>koala</td>\n",
95
- " <td>espresso</td>\n",
96
- " <td>lesser panda</td>\n",
97
- " <td>orange</td>\n",
98
- " <td>sports car</td>\n",
99
- " </tr>\n",
100
- " <tr>\n",
101
- " <th>index</th>\n",
102
- " <td>0</td>\n",
103
- " <td>1</td>\n",
104
- " <td>2</td>\n",
105
- " <td>3</td>\n",
106
- " <td>4</td>\n",
107
- " <td>5</td>\n",
108
- " <td>6</td>\n",
109
- " <td>7</td>\n",
110
- " <td>8</td>\n",
111
- " <td>9</td>\n",
112
- " </tr>\n",
113
- " </tbody>\n",
114
- "</table>\n",
115
- "</div>"
116
- ],
117
- "text/plain": [
118
- " n03662601 n02165456 n07873807 n07720875 n04146614 \\\n",
119
- "class lifeboat ladybug pizza, pizza pie bell pepper school bus \n",
120
- "index 0 1 2 3 4 \n",
121
- "\n",
122
- " n01882714 n07920052 n02509815 n07747607 n04285008 \n",
123
- "class koala espresso lesser panda orange sports car \n",
124
- "index 5 6 7 8 9 "
125
- ]
126
- },
127
- "execution_count": 11,
128
- "metadata": {},
129
- "output_type": "execute_result"
130
- }
131
- ],
132
- "source": [
133
- "class_label"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": 81,
139
- "id": "2a4e8cd0-94e6-446c-93c1-4b7c3c9984d7",
140
- "metadata": {},
141
- "outputs": [],
142
- "source": [
143
- "cv=[]\n",
144
- "fv=[]\n",
145
- "for file in os.listdir(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_train\"):\n",
146
- " for img in os.listdir(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_train\\{}\\images\".format(file)):\n",
147
- " img=cv2.imread(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_train\\{}\\images\\{}\".format(file,img))\n",
148
- " fv.append(img)\n",
149
- " cv.append(class_label.loc[\"class\"][file])\n"
150
- ]
151
- },
152
- {
153
- "cell_type": "code",
154
- "execution_count": 83,
155
- "id": "bf694bc9-5b4f-435f-a0ed-68f374554c2f",
156
- "metadata": {},
157
- "outputs": [
158
- {
159
- "data": {
160
- "text/plain": [
161
- "5000"
162
- ]
163
- },
164
- "execution_count": 83,
165
- "metadata": {},
166
- "output_type": "execute_result"
167
- }
168
- ],
169
- "source": [
170
- "len(fv)"
171
- ]
172
- },
173
- {
174
- "cell_type": "code",
175
- "execution_count": 89,
176
- "id": "25c14a98-9baf-4d23-a12c-50ae2f6a07a9",
177
- "metadata": {},
178
- "outputs": [],
179
- "source": [
180
- "final_fv=np.asarray(fv)"
181
- ]
182
- },
183
- {
184
- "cell_type": "code",
185
- "execution_count": 91,
186
- "id": "f163c2e6-0da1-4263-a7a6-37e17f0d39cf",
187
- "metadata": {},
188
- "outputs": [
189
- {
190
- "data": {
191
- "text/plain": [
192
- "array([[[[ 93, 123, 128],\n",
193
- " [ 99, 129, 134],\n",
194
- " [100, 126, 132],\n",
195
- " ...,\n",
196
- " [143, 156, 164],\n",
197
- " [175, 191, 197],\n",
198
- " [ 72, 88, 94]],\n",
199
- "\n",
200
- " [[ 94, 124, 129],\n",
201
- " [ 90, 119, 124],\n",
202
- " [109, 135, 141],\n",
203
- " ...,\n",
204
- " [142, 155, 163],\n",
205
- " [161, 177, 183],\n",
206
- " [116, 132, 138]],\n",
207
- "\n",
208
- " [[ 99, 128, 133],\n",
209
- " [ 91, 120, 125],\n",
210
- " [142, 168, 174],\n",
211
- " ...,\n",
212
- " [179, 192, 200],\n",
213
- " [160, 176, 182],\n",
214
- " [ 79, 95, 101]],\n",
215
- "\n",
216
- " ...,\n",
217
- "\n",
218
- " [[ 60, 76, 92],\n",
219
- " [ 93, 110, 123],\n",
220
- " [116, 132, 145],\n",
221
- " ...,\n",
222
- " [ 32, 58, 98],\n",
223
- " [ 15, 40, 82],\n",
224
- " [ 46, 74, 115]],\n",
225
- "\n",
226
- " [[112, 128, 141],\n",
227
- " [128, 144, 157],\n",
228
- " [132, 145, 159],\n",
229
- " ...,\n",
230
- " [ 10, 36, 76],\n",
231
- " [ 35, 60, 102],\n",
232
- " [ 38, 63, 107]],\n",
233
- "\n",
234
- " [[153, 166, 180],\n",
235
- " [152, 165, 179],\n",
236
- " [137, 149, 161],\n",
237
- " ...,\n",
238
- " [ 34, 59, 99],\n",
239
- " [ 70, 95, 139],\n",
240
- " [ 51, 76, 120]]],\n",
241
- "\n",
242
- "\n",
243
- " [[[ 10, 9, 13],\n",
244
- " [ 0, 0, 3],\n",
245
- " [ 0, 0, 3],\n",
246
- " ...,\n",
247
- " [ 61, 83, 118],\n",
248
- " [ 47, 73, 110],\n",
249
- " [ 63, 89, 129]],\n",
250
- "\n",
251
- " [[ 25, 24, 28],\n",
252
- " [ 3, 2, 4],\n",
253
- " [ 4, 3, 7],\n",
254
- " ...,\n",
255
- " [ 66, 89, 121],\n",
256
- " [ 59, 85, 122],\n",
257
- " [ 66, 93, 130]],\n",
258
- "\n",
259
- " [[ 66, 63, 65],\n",
260
- " [ 66, 64, 64],\n",
261
- " [ 36, 33, 35],\n",
262
- " ...,\n",
263
- " [ 67, 88, 119],\n",
264
- " [ 73, 97, 133],\n",
265
- " [ 95, 121, 157]],\n",
266
- "\n",
267
- " ...,\n",
268
- "\n",
269
- " [[ 75, 87, 115],\n",
270
- " [ 97, 108, 135],\n",
271
- " [ 58, 68, 92],\n",
272
- " ...,\n",
273
- " [ 45, 65, 96],\n",
274
- " [ 86, 100, 122],\n",
275
- " [ 72, 84, 102]],\n",
276
- "\n",
277
- " [[ 79, 94, 126],\n",
278
- " [ 87, 101, 130],\n",
279
- " [ 32, 44, 72],\n",
280
- " ...,\n",
281
- " [ 47, 64, 91],\n",
282
- " [ 92, 104, 122],\n",
283
- " [ 66, 78, 90]],\n",
284
- "\n",
285
- " [[ 41, 58, 91],\n",
286
- " [ 77, 92, 124],\n",
287
- " [ 71, 85, 114],\n",
288
- " ...,\n",
289
- " [ 31, 47, 70],\n",
290
- " [ 85, 98, 114],\n",
291
- " [ 71, 81, 91]]],\n",
292
- "\n",
293
- "\n",
294
- " [[[ 28, 34, 53],\n",
295
- " [ 0, 4, 23],\n",
296
- " [ 0, 7, 27],\n",
297
- " ...,\n",
298
- " [119, 136, 163],\n",
299
- " [109, 123, 151],\n",
300
- " [ 98, 112, 140]],\n",
301
- "\n",
302
- " [[ 71, 75, 94],\n",
303
- " [ 11, 17, 36],\n",
304
- " [ 0, 4, 23],\n",
305
- " ...,\n",
306
- " [136, 153, 180],\n",
307
- " [136, 150, 178],\n",
308
- " [124, 138, 166]],\n",
309
- "\n",
310
- " [[ 10, 12, 30],\n",
311
- " [ 8, 12, 30],\n",
312
- " [ 0, 0, 16],\n",
313
- " ...,\n",
314
- " [111, 128, 154],\n",
315
- " [125, 140, 166],\n",
316
- " [117, 132, 158]],\n",
317
- "\n",
318
- " ...,\n",
319
- "\n",
320
- " [[ 66, 79, 123],\n",
321
- " [ 88, 101, 147],\n",
322
- " [ 69, 80, 132],\n",
323
- " ...,\n",
324
- " [ 80, 100, 155],\n",
325
- " [101, 122, 174],\n",
326
- " [ 89, 110, 161]],\n",
327
- "\n",
328
- " [[ 42, 55, 99],\n",
329
- " [ 37, 50, 96],\n",
330
- " [ 66, 77, 129],\n",
331
- " ...,\n",
332
- " [121, 141, 198],\n",
333
- " [ 91, 112, 167],\n",
334
- " [ 81, 103, 155]],\n",
335
- "\n",
336
- " [[ 50, 63, 107],\n",
337
- " [ 43, 56, 102],\n",
338
- " [ 85, 96, 148],\n",
339
- " ...,\n",
340
- " [ 60, 82, 140],\n",
341
- " [112, 135, 191],\n",
342
- " [ 95, 119, 173]]],\n",
343
- "\n",
344
- "\n",
345
- " ...,\n",
346
- "\n",
347
- "\n",
348
- " [[[ 92, 100, 113],\n",
349
- " [115, 124, 134],\n",
350
- " [148, 153, 162],\n",
351
- " ...,\n",
352
- " [133, 140, 133],\n",
353
- " [134, 138, 132],\n",
354
- " [134, 138, 132]],\n",
355
- "\n",
356
- " [[155, 159, 170],\n",
357
- " [164, 166, 177],\n",
358
- " [173, 176, 184],\n",
359
- " ...,\n",
360
- " [138, 145, 138],\n",
361
- " [140, 144, 138],\n",
362
- " [142, 146, 140]],\n",
363
- "\n",
364
- " [[192, 186, 197],\n",
365
- " [189, 184, 193],\n",
366
- " [187, 183, 189],\n",
367
- " ...,\n",
368
- " [138, 144, 139],\n",
369
- " [139, 145, 140],\n",
370
- " [140, 146, 141]],\n",
371
- "\n",
372
- " ...,\n",
373
- "\n",
374
- " [[140, 160, 161],\n",
375
- " [142, 162, 163],\n",
376
- " [142, 160, 161],\n",
377
- " ...,\n",
378
- " [173, 175, 175],\n",
379
- " [173, 175, 175],\n",
380
- " [173, 175, 175]],\n",
381
- "\n",
382
- " [[131, 151, 152],\n",
383
- " [132, 152, 153],\n",
384
- " [134, 152, 153],\n",
385
- " ...,\n",
386
- " [173, 175, 175],\n",
387
- " [172, 174, 174],\n",
388
- " [172, 174, 174]],\n",
389
- "\n",
390
- " [[120, 140, 141],\n",
391
- " [121, 141, 142],\n",
392
- " [127, 145, 146],\n",
393
- " ...,\n",
394
- " [172, 174, 174],\n",
395
- " [172, 174, 174],\n",
396
- " [171, 173, 173]]],\n",
397
- "\n",
398
- "\n",
399
- " [[[133, 146, 144],\n",
400
- " [130, 143, 141],\n",
401
- " [128, 142, 138],\n",
402
- " ...,\n",
403
- " [142, 142, 142],\n",
404
- " [155, 154, 156],\n",
405
- " [132, 131, 133]],\n",
406
- "\n",
407
- " [[122, 135, 133],\n",
408
- " [149, 163, 159],\n",
409
- " [136, 150, 146],\n",
410
- " ...,\n",
411
- " [130, 130, 130],\n",
412
- " [144, 143, 145],\n",
413
- " [154, 153, 155]],\n",
414
- "\n",
415
- " [[133, 147, 143],\n",
416
- " [ 18, 32, 28],\n",
417
- " [108, 122, 118],\n",
418
- " ...,\n",
419
- " [155, 158, 156],\n",
420
- " [133, 135, 135],\n",
421
- " [145, 147, 147]],\n",
422
- "\n",
423
- " ...,\n",
424
- "\n",
425
- " [[ 41, 40, 50],\n",
426
- " [ 28, 29, 39],\n",
427
- " [ 17, 18, 28],\n",
428
- " ...,\n",
429
- " [134, 142, 142],\n",
430
- " [165, 173, 173],\n",
431
- " [202, 210, 210]],\n",
432
- "\n",
433
- " [[ 37, 33, 44],\n",
434
- " [ 31, 30, 40],\n",
435
- " [ 29, 28, 38],\n",
436
- " ...,\n",
437
- " [149, 157, 157],\n",
438
- " [166, 174, 174],\n",
439
- " [209, 217, 217]],\n",
440
- "\n",
441
- " [[ 42, 38, 49],\n",
442
- " [ 39, 35, 46],\n",
443
- " [ 36, 35, 45],\n",
444
- " ...,\n",
445
- " [119, 127, 127],\n",
446
- " [172, 180, 180],\n",
447
- " [173, 181, 181]]],\n",
448
- "\n",
449
- "\n",
450
- " [[[ 26, 16, 9],\n",
451
- " [ 25, 16, 12],\n",
452
- " [ 32, 27, 28],\n",
453
- " ...,\n",
454
- " [ 35, 16, 13],\n",
455
- " [ 34, 13, 11],\n",
456
- " [ 33, 12, 10]],\n",
457
- "\n",
458
- " [[ 26, 16, 9],\n",
459
- " [ 25, 16, 12],\n",
460
- " [ 32, 27, 28],\n",
461
- " ...,\n",
462
- " [ 37, 18, 15],\n",
463
- " [ 34, 13, 11],\n",
464
- " [ 32, 11, 9]],\n",
465
- "\n",
466
- " [[ 25, 15, 8],\n",
467
- " [ 24, 15, 11],\n",
468
- " [ 32, 27, 28],\n",
469
- " ...,\n",
470
- " [ 39, 20, 17],\n",
471
- " [ 35, 14, 12],\n",
472
- " [ 32, 11, 9]],\n",
473
- "\n",
474
- " ...,\n",
475
- "\n",
476
- " [[ 28, 9, 4],\n",
477
- " [ 20, 4, 0],\n",
478
- " [ 26, 10, 4],\n",
479
- " ...,\n",
480
- " [ 86, 82, 57],\n",
481
- " [ 88, 87, 59],\n",
482
- " [ 83, 82, 54]],\n",
483
- "\n",
484
- " [[ 33, 15, 8],\n",
485
- " [ 16, 0, 0],\n",
486
- " [ 25, 9, 3],\n",
487
- " ...,\n",
488
- " [ 80, 85, 56],\n",
489
- " [ 84, 92, 62],\n",
490
- " [ 71, 81, 51]],\n",
491
- "\n",
492
- " [[ 32, 14, 7],\n",
493
- " [ 16, 0, 0],\n",
494
- " [ 30, 14, 8],\n",
495
- " ...,\n",
496
- " [ 74, 86, 56],\n",
497
- " [ 83, 95, 65],\n",
498
- " [ 66, 81, 50]]]], dtype=uint8)"
499
- ]
500
- },
501
- "execution_count": 91,
502
- "metadata": {},
503
- "output_type": "execute_result"
504
- }
505
- ],
506
- "source": [
507
- "final_fv"
508
- ]
509
- },
510
- {
511
- "cell_type": "code",
512
- "execution_count": 93,
513
- "id": "23bad3e7-6026-4ce1-a629-ec12d48e3c57",
514
- "metadata": {},
515
- "outputs": [],
516
- "source": [
517
- "le=LabelEncoder()\n",
518
- "final_cv=le.fit_transform(cv)"
519
- ]
520
- },
521
- {
522
- "cell_type": "code",
523
- "execution_count": 117,
524
- "id": "2f2abaff-b6fa-4a92-8ef9-c48aae150bf8",
525
- "metadata": {},
526
- "outputs": [
527
- {
528
- "data": {
529
- "text/plain": [
530
- "(5000, 64, 64, 3)"
531
- ]
532
- },
533
- "execution_count": 117,
534
- "metadata": {},
535
- "output_type": "execute_result"
536
- }
537
- ],
538
- "source": [
539
- "final_fv.shape"
540
- ]
541
- },
542
- {
543
- "cell_type": "code",
544
- "execution_count": 95,
545
- "id": "47b447df-9923-4229-b956-37a0cb93be0f",
546
- "metadata": {},
547
- "outputs": [
548
- {
549
- "name": "stderr",
550
- "output_type": "stream",
551
- "text": [
552
- "C:\\Users\\DELL\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\core\\input_layer.py:27: UserWarning: Argument `input_shape` is deprecated. Use `shape` instead.\n",
553
- " warnings.warn(\n"
554
- ]
555
- }
556
- ],
557
- "source": [
558
- "model=Sequential()\n",
559
- "model.add(InputLayer(input_shape=(64,64,3)))\n",
560
- "\n",
561
- "model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
562
- "\n",
563
- "model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
564
- "model.add(MaxPooling2D((2,2),strides=(2,2),padding=\"valid\"))\n",
565
- "\n",
566
- "model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
567
- "\n",
568
- "model.add(Conv2D(10,(3,3),strides=(1,1),padding='valid',activation='relu'))\n",
569
- "model.add(MaxPooling2D((2,2),strides=(2,2),padding=\"valid\"))\n",
570
- "\n",
571
- "model.add(Flatten())\n",
572
- "\n",
573
- "model.add(Dense(10,activation=\"softmax\"))\n",
574
- "\n",
575
- "\n",
576
- "\n"
577
- ]
578
- },
579
- {
580
- "cell_type": "code",
581
- "execution_count": 97,
582
- "id": "60ac58fd-1da6-4ca2-bcb8-8e20af4fd654",
583
- "metadata": {},
584
- "outputs": [
585
- {
586
- "data": {
587
- "text/html": [
588
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_3\"</span>\n",
589
- "</pre>\n"
590
- ],
591
- "text/plain": [
592
- "\u001b[1mModel: \"sequential_3\"\u001b[0m\n"
593
- ]
594
- },
595
- "metadata": {},
596
- "output_type": "display_data"
597
- },
598
- {
599
- "data": {
600
- "text/html": [
601
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
602
- "┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param # </span>┃\n",
603
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
604
- "│ conv2d_6 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">62</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">62</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">280</span> │\n",
605
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
606
- "│ conv2d_7 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">910</span> │\n",
607
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
608
- "│ max_pooling2d_2 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
609
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
610
- "│ conv2d_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">910</span> │\n",
611
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
612
- "│ conv2d_9 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">26</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">26</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">910</span> │\n",
613
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
614
- "│ max_pooling2d_3 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">13</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">13</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
615
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
616
- "│ flatten_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Flatten</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">1690</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
617
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
618
- "│ dense_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">10</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">16,910</span> │\n",
619
- "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
620
- "</pre>\n"
621
- ],
622
- "text/plain": [
623
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
624
- "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
625
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
626
- "│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m62\u001b[0m, \u001b[38;5;34m62\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m280\u001b[0m │\n",
627
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
628
- "│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m60\u001b[0m, \u001b[38;5;34m60\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m910\u001b[0m │\n",
629
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
630
- "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
631
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
632
- "│ conv2d_8 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m910\u001b[0m │\n",
633
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
634
- "│ conv2d_9 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m910\u001b[0m │\n",
635
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
636
- "│ max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
637
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
638
- "│ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1690\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
639
- "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
640
- "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m16,910\u001b[0m │\n",
641
- "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
642
- ]
643
- },
644
- "metadata": {},
645
- "output_type": "display_data"
646
- },
647
- {
648
- "data": {
649
- "text/html": [
650
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">19,920</span> (77.81 KB)\n",
651
- "</pre>\n"
652
- ],
653
- "text/plain": [
654
- "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m19,920\u001b[0m (77.81 KB)\n"
655
- ]
656
- },
657
- "metadata": {},
658
- "output_type": "display_data"
659
- },
660
- {
661
- "data": {
662
- "text/html": [
663
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">19,920</span> (77.81 KB)\n",
664
- "</pre>\n"
665
- ],
666
- "text/plain": [
667
- "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m19,920\u001b[0m (77.81 KB)\n"
668
- ]
669
- },
670
- "metadata": {},
671
- "output_type": "display_data"
672
- },
673
- {
674
- "data": {
675
- "text/html": [
676
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
677
- "</pre>\n"
678
- ],
679
- "text/plain": [
680
- "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
681
- ]
682
- },
683
- "metadata": {},
684
- "output_type": "display_data"
685
- }
686
- ],
687
- "source": [
688
- "model.summary()"
689
- ]
690
- },
691
- {
692
- "cell_type": "code",
693
- "execution_count": 99,
694
- "id": "ab6f9579-a47d-4463-914f-5d2cebbb617f",
695
- "metadata": {},
696
- "outputs": [
697
- {
698
- "data": {
699
- "text/plain": [
700
- "19920"
701
- ]
702
- },
703
- "execution_count": 99,
704
- "metadata": {},
705
- "output_type": "execute_result"
706
- }
707
- ],
708
- "source": [
709
- "16900+(280)+(910*3)+10"
710
- ]
711
- },
712
- {
713
- "cell_type": "code",
714
- "execution_count": 101,
715
- "id": "0be3eeba-a46b-4eea-bc96-f2c744a7bb7c",
716
- "metadata": {},
717
- "outputs": [],
718
- "source": [
719
- "model.compile(optimizer=\"adam\",loss=\"sparse_categorical_crossentropy\",metrics=[\"accuracy\"])"
720
- ]
721
- },
722
- {
723
- "cell_type": "code",
724
- "execution_count": 103,
725
- "id": "40e68fd9-bd57-4542-ab64-8ce9e1441f3e",
726
- "metadata": {},
727
- "outputs": [
728
- {
729
- "name": "stdout",
730
- "output_type": "stream",
731
- "text": [
732
- "Epoch 1/30\n",
733
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 23ms/step - accuracy: 0.2080 - loss: 4.6804 - val_accuracy: 0.0000e+00 - val_loss: 19.1830\n",
734
- "Epoch 2/30\n",
735
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.3782 - loss: 1.6260 - val_accuracy: 0.0000e+00 - val_loss: 26.0851\n",
736
- "Epoch 3/30\n",
737
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.5056 - loss: 1.3495 - val_accuracy: 0.0000e+00 - val_loss: 41.0336\n",
738
- "Epoch 4/30\n",
739
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.6231 - loss: 1.0457 - val_accuracy: 0.0000e+00 - val_loss: 40.3504\n",
740
- "Epoch 5/30\n",
741
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.6812 - loss: 0.9255 - val_accuracy: 0.0000e+00 - val_loss: 52.1076\n",
742
- "Epoch 6/30\n",
743
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 20ms/step - accuracy: 0.7157 - loss: 0.8099 - val_accuracy: 0.0000e+00 - val_loss: 50.8672\n",
744
- "Epoch 7/30\n",
745
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.7648 - loss: 0.6788 - val_accuracy: 0.0000e+00 - val_loss: 52.5935\n",
746
- "Epoch 8/30\n",
747
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.7743 - loss: 0.6353 - val_accuracy: 0.0000e+00 - val_loss: 59.4032\n",
748
- "Epoch 9/30\n",
749
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8113 - loss: 0.5625 - val_accuracy: 0.0000e+00 - val_loss: 56.3095\n",
750
- "Epoch 10/30\n",
751
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8503 - loss: 0.4576 - val_accuracy: 0.0000e+00 - val_loss: 60.5619\n",
752
- "Epoch 11/30\n",
753
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8718 - loss: 0.4068 - val_accuracy: 0.0000e+00 - val_loss: 67.3940\n",
754
- "Epoch 12/30\n",
755
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.8908 - loss: 0.3511 - val_accuracy: 0.0000e+00 - val_loss: 73.8187\n",
756
- "Epoch 13/30\n",
757
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9020 - loss: 0.2951 - val_accuracy: 0.0000e+00 - val_loss: 72.3385\n",
758
- "Epoch 14/30\n",
759
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.9145 - loss: 0.2679 - val_accuracy: 0.0000e+00 - val_loss: 80.5521\n",
760
- "Epoch 15/30\n",
761
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.9059 - loss: 0.2770 - val_accuracy: 0.0000e+00 - val_loss: 90.8833\n",
762
- "Epoch 16/30\n",
763
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9445 - loss: 0.1843 - val_accuracy: 0.0000e+00 - val_loss: 95.8095\n",
764
- "Epoch 17/30\n",
765
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 20ms/step - accuracy: 0.9568 - loss: 0.1523 - val_accuracy: 0.0000e+00 - val_loss: 102.6003\n",
766
- "Epoch 18/30\n",
767
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9580 - loss: 0.1363 - val_accuracy: 0.0000e+00 - val_loss: 101.0709\n",
768
- "Epoch 19/30\n",
769
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9502 - loss: 0.1436 - val_accuracy: 0.0000e+00 - val_loss: 100.0361\n",
770
- "Epoch 20/30\n",
771
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 23ms/step - accuracy: 0.9425 - loss: 0.1797 - val_accuracy: 0.0000e+00 - val_loss: 108.6705\n",
772
- "Epoch 21/30\n",
773
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9640 - loss: 0.1122 - val_accuracy: 0.0000e+00 - val_loss: 101.3856\n",
774
- "Epoch 22/30\n",
775
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9602 - loss: 0.1128 - val_accuracy: 0.0000e+00 - val_loss: 106.5760\n",
776
- "Epoch 23/30\n",
777
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9660 - loss: 0.1010 - val_accuracy: 0.0000e+00 - val_loss: 117.6791\n",
778
- "Epoch 24/30\n",
779
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9628 - loss: 0.1130 - val_accuracy: 0.0000e+00 - val_loss: 110.5023\n",
780
- "Epoch 25/30\n",
781
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9647 - loss: 0.1049 - val_accuracy: 0.0000e+00 - val_loss: 111.2337\n",
782
- "Epoch 26/30\n",
783
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9792 - loss: 0.0657 - val_accuracy: 0.0000e+00 - val_loss: 124.0935\n",
784
- "Epoch 27/30\n",
785
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9763 - loss: 0.0807 - val_accuracy: 0.0000e+00 - val_loss: 123.4486\n",
786
- "Epoch 28/30\n",
787
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 20ms/step - accuracy: 0.9643 - loss: 0.1042 - val_accuracy: 0.0000e+00 - val_loss: 115.8864\n",
788
- "Epoch 29/30\n",
789
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 21ms/step - accuracy: 0.9656 - loss: 0.1140 - val_accuracy: 0.0000e+00 - val_loss: 106.3280\n",
790
- "Epoch 30/30\n",
791
- "\u001b[1m125/125\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 22ms/step - accuracy: 0.9605 - loss: 0.1465 - val_accuracy: 0.0000e+00 - val_loss: 127.4334\n"
792
- ]
793
- },
794
- {
795
- "data": {
796
- "text/plain": [
797
- "<keras.src.callbacks.history.History at 0x14e2460cd90>"
798
- ]
799
- },
800
- "execution_count": 103,
801
- "metadata": {},
802
- "output_type": "execute_result"
803
- }
804
- ],
805
- "source": [
806
- "model.fit(final_fv,final_cv,epochs=30,batch_size=32,validation_split=0.2)"
807
- ]
808
- },
809
- {
810
- "cell_type": "code",
811
- "execution_count": 105,
812
- "id": "da3a460f-aa3f-4703-9b94-9fd99f4f9e29",
813
- "metadata": {},
814
- "outputs": [
815
- {
816
- "data": {
817
- "text/plain": [
818
- "<Sequential name=sequential_3, built=True>"
819
- ]
820
- },
821
- "execution_count": 105,
822
- "metadata": {},
823
- "output_type": "execute_result"
824
- }
825
- ],
826
- "source": [
827
- "model"
828
- ]
829
- },
830
- {
831
- "cell_type": "code",
832
- "execution_count": 109,
833
- "id": "a8ca2658-6f2d-4104-97be-044453bebe80",
834
- "metadata": {},
835
- "outputs": [],
836
- "source": [
837
- "img1=cv2.imread(r\"C:\\Users\\DELL\\Desktop\\cnn-explainer-master\\cnn-explainer-master\\tiny-vgg\\data\\data\\class_10_val\\val_images\\val_47.JPEG\")"
838
- ]
839
- },
840
- {
841
- "cell_type": "code",
842
- "execution_count": 111,
843
- "id": "dcb1bcd0-5007-41d9-8db4-2d61b2d03b1a",
844
- "metadata": {},
845
- "outputs": [
846
- {
847
- "data": {
848
- "text/plain": [
849
- "(64, 64, 3)"
850
- ]
851
- },
852
- "execution_count": 111,
853
- "metadata": {},
854
- "output_type": "execute_result"
855
- }
856
- ],
857
- "source": [
858
- "img1.shape"
859
- ]
860
- },
861
- {
862
- "cell_type": "code",
863
- "execution_count": 119,
864
- "id": "67a53bb1-e593-4160-8487-71afa37ab006",
865
- "metadata": {},
866
- "outputs": [
867
- {
868
- "data": {
869
- "text/plain": [
870
- "(1, 64, 64, 3)"
871
- ]
872
- },
873
- "execution_count": 119,
874
- "metadata": {},
875
- "output_type": "execute_result"
876
- }
877
- ],
878
- "source": [
879
- "img1[np.newaxis,:,:,:].shape"
880
- ]
881
- },
882
- {
883
- "cell_type": "code",
884
- "execution_count": 123,
885
- "id": "396e6e07-7036-4956-9663-adabf5475eb6",
886
- "metadata": {},
887
- "outputs": [
888
- {
889
- "name": "stdout",
890
- "output_type": "stream",
891
- "text": [
892
- "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 287ms/step\n"
893
- ]
894
- },
895
- {
896
- "data": {
897
- "text/plain": [
898
- "0"
899
- ]
900
- },
901
- "execution_count": 123,
902
- "metadata": {},
903
- "output_type": "execute_result"
904
- }
905
- ],
906
- "source": [
907
- "np.argmax(model.predict(img1[np.newaxis,:,:,:]))"
908
- ]
909
- },
910
- {
911
- "cell_type": "code",
912
- "execution_count": 125,
913
- "id": "3092204e-efb8-49fd-b578-43ccc1e60e67",
914
- "metadata": {},
915
- "outputs": [
916
- {
917
- "name": "stdout",
918
- "output_type": "stream",
919
- "text": [
920
- "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step\n"
921
- ]
922
- },
923
- {
924
- "data": {
925
- "text/plain": [
926
- "array(['bell pepper'], dtype='<U16')"
927
- ]
928
- },
929
- "execution_count": 125,
930
- "metadata": {},
931
- "output_type": "execute_result"
932
- }
933
- ],
934
- "source": [
935
- "le.inverse_transform([np.argmax(model.predict(img1[np.newaxis,:,:,:]))])"
936
- ]
937
- },
938
- {
939
- "cell_type": "code",
940
- "execution_count": null,
941
- "id": "42a6a30b-9ad4-451b-a63e-49e61b9c4721",
942
- "metadata": {},
943
- "outputs": [],
944
- "source": []
945
- }
946
- ],
947
- "metadata": {
948
- "kernelspec": {
949
- "display_name": "Python 3 (ipykernel)",
950
- "language": "python",
951
- "name": "python3"
952
- },
953
- "language_info": {
954
- "codemirror_mode": {
955
- "name": "ipython",
956
- "version": 3
957
- },
958
- "file_extension": ".py",
959
- "mimetype": "text/x-python",
960
- "name": "python",
961
- "nbconvert_exporter": "python",
962
- "pygments_lexer": "ipython3",
963
- "version": "3.11.7"
964
- }
965
- },
966
- "nbformat": 4,
967
- "nbformat_minor": 5
968
- }