pavuluriashwitha commited on
Commit
95cd665
·
verified ·
1 Parent(s): 211103b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -0
app.py CHANGED
@@ -48,6 +48,62 @@ st.markdown("""
48
  st.sidebar.header("Upload Your Image")
49
  uploaded_file = st.sidebar.file_uploader("Choose an image", type=["jpg", "png", "jpeg"], help="Supported formats: JPG, PNG, JPEG")
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  if uploaded_file:
52
  image = Image.open(uploaded_file)
53
  st.image(image, caption="📸 Uploaded Image", use_column_width=True)
 
48
  st.sidebar.header("Upload Your Image")
49
  uploaded_file = st.sidebar.file_uploader("Choose an image", type=["jpg", "png", "jpeg"], help="Supported formats: JPG, PNG, JPEG")
50
 
51
+ if uploaded_file:
52
+ image = Image.open(uploaded_file)
53
+ st.image(image, caption="📸 Uploaded Image", use_column_width=True)
54
+
55
+ if st.button("🔍 Classify Image", use_container_width=True):
56
+ prediction = predict(image)
57
+ st.success(f"🎯 Predicted Class: {prediction}")import os
58
+ os.system("pip install tensorflow")
59
+ os.system("pip install scikit-learn")
60
+
61
+ import streamlit as st
62
+ import tensorflow as tf
63
+ import numpy as np
64
+ import pickle
65
+ from PIL import Image
66
+
67
+ # Constants
68
+ MODEL_PATH = "image_classification.h5"
69
+ LABEL_ENCODER_PATH = "le.pkl"
70
+ EXPECTED_SIZE = (64, 64) # Update this based on your model's input shape
71
+
72
+ def load_resources():
73
+ """Load model and label encoder."""
74
+ model = tf.keras.models.load_model(MODEL_PATH)
75
+ with open(LABEL_ENCODER_PATH, "rb") as f:
76
+ label_encoder = pickle.load(f)
77
+ return model, label_encoder
78
+
79
+ # Load resources
80
+ model, label_encoder = load_resources()
81
+
82
+ def preprocess_image(image):
83
+ """Resize image to match model input shape."""
84
+ image = image.resize(EXPECTED_SIZE) # Resize to match model input
85
+ image_array = np.array(image) # Convert to numpy array
86
+ image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
87
+ return image_array
88
+
89
+ def predict(image):
90
+ """Predict the class of the uploaded image."""
91
+ image_array = preprocess_image(image)
92
+ preds = model.predict(image_array)
93
+ class_index = np.argmax(preds)
94
+ return label_encoder.inverse_transform([class_index])[0]
95
+
96
+ # Streamlit UI
97
+ st.set_page_config(page_title="Image Classifier", layout="wide")
98
+ st.markdown("""
99
+ <h1 style='text-align: center; color: #4A90E2;'>🖼️ Image Classification App</h1>
100
+ <p style='text-align: center; font-size: 18px;'>Upload an image and let our model classify it for you!</p>
101
+ <hr>
102
+ """, unsafe_allow_html=True)
103
+
104
+ st.sidebar.header("Upload Your Image")
105
+ uploaded_file = st.sidebar.file_uploader("Choose an image", type=["jpg", "png", "jpeg"], help="Supported formats: JPG, PNG, JPEG")
106
+
107
  if uploaded_file:
108
  image = Image.open(uploaded_file)
109
  st.image(image, caption="📸 Uploaded Image", use_column_width=True)