Spaces:
Running
Running
File size: 12,898 Bytes
a8d6aab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import torch
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.loggers import WandbLogger
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
get_linear_schedule_with_warmup,
BitsAndBytesConfig,
TrainingArguments,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from rich.console import Console
from torch.utils.data import Dataset, DataLoader
# Enable Tensor Core optimization for RTX GPUs
torch.set_float32_matmul_precision('medium')
# Initialize rich console for better logging
console = Console()
class TextDataset(Dataset):
def __init__(self, dataset, tokenizer, max_length=512):
self.dataset = dataset
self.tokenizer = tokenizer
self.max_length = max_length
# Ensure tokenizer has a padding token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if self.tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
item = self.dataset[idx]
# Combine instruction and input if they exist
prompt = item.get("instruction", "")
if item.get("input"):
prompt += "\n" + item["input"]
# Tokenize the prompt
encoding = self.tokenizer(
prompt,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return {
"input_ids": encoding["input_ids"].squeeze(),
"attention_mask": encoding["attention_mask"].squeeze(),
"prompt": prompt
}
class GRPOModel(pl.LightningModule):
def __init__(
self,
model_name="microsoft/phi-2",
learning_rate=2e-5,
num_train_epochs=3,
warmup_steps=100,
batch_size=2,
max_length=128,
beta=0.04,
num_generations=2,
train_dataset=None,
):
super().__init__()
self.save_hyperparameters()
# Store train dataset
self.train_dataset = train_dataset
# Configure 4-bit quantization with memory optimizations
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_quant_storage=torch.float16,
)
# Load model with quantization and memory optimizations
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = 'left'
# Prepare model for training
self.model = prepare_model_for_kbit_training(self.model)
# LoRA configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
self.model = get_peft_model(self.model, lora_config)
# Store model name for reference model
self.model_name = model_name
self.ref_model = None
def setup(self, stage=None):
# Move model to the correct device after initialization
if stage == "fit":
self.model = self.model.to(self.device)
def get_reference_model(self):
if self.ref_model is None:
# Load reference model with quantization
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
self.ref_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
device_map=None,
trust_remote_code=True,
)
self.ref_model.eval()
self.ref_model = self.ref_model.to(self.device)
return self.ref_model
def reward_function(self, completions):
rewards = []
for completion in completions:
# Reward based on length (normalized)
length_reward = len(completion.split()) / 100
# Reward based on diversity (unique words)
unique_words = len(set(completion.lower().split()))
diversity_reward = unique_words / len(completion.split())
# Combined reward
reward = 0.7 * length_reward + 0.3 * diversity_reward
rewards.append(reward)
return torch.tensor(rewards, device=self.device)
def forward(self, input_ids, attention_mask):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True
)
return outputs.logits
def training_step(self, batch, batch_idx):
# Generate completions
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
prompts = batch["prompt"]
# Generate multiple completions for each prompt
all_completions = []
for _ in range(self.hparams.num_generations):
outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id
)
completions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
all_completions.extend(completions)
# Calculate rewards
rewards = self.reward_function(all_completions)
# Calculate KL divergence
ref_model = self.get_reference_model()
with torch.no_grad():
ref_outputs = ref_model(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True
)
ref_logits = ref_outputs.logits
policy_logits = self(input_ids, attention_mask)
kl_div = torch.nn.functional.kl_div(
torch.nn.functional.log_softmax(policy_logits, dim=-1),
torch.nn.functional.softmax(ref_logits, dim=-1),
reduction='batchmean'
)
# Calculate GRPO loss
loss = -rewards.mean() + self.hparams.beta * kl_div
self.log("train_loss", loss)
self.log("train_reward", rewards.mean())
self.log("train_kl_div", kl_div)
return loss
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=self.hparams.warmup_steps,
num_training_steps=self.hparams.num_train_epochs * len(self.train_dataloader())
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"monitor": "train_loss",
"frequency": 1
}
}
def on_train_end(self):
# Clean up reference model to free memory
if self.ref_model is not None:
del self.ref_model
self.ref_model = None
torch.cuda.empty_cache()
def train_dataloader(self):
if self.train_dataset is None:
raise ValueError("Train dataset not provided")
return DataLoader(
self.train_dataset,
batch_size=self.hparams.batch_size,
shuffle=True,
num_workers=4,
persistent_workers=True,
pin_memory=True
)
class TextDataModule(pl.LightningDataModule):
def __init__(
self,
tokenizer,
max_length=256,
batch_size=4,
num_workers=4,
pin_memory=True,
):
super().__init__()
self.tokenizer = tokenizer
self.max_length = max_length
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
def main():
# Load dataset
dataset = load_dataset("tatsu-lab/alpaca")
train_dataset = dataset["train"].select(range(500))
# Initialize tokenizer with left padding
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Create dataset with reduced max length
train_dataset = TextDataset(train_dataset, tokenizer, max_length=128)
# Initialize model with optimized parameters for RTX 4060 Laptop
model = GRPOModel(
train_dataset=train_dataset,
batch_size=2,
num_generations=2,
max_length=128,
learning_rate=1e-5,
beta=0.02,
)
# Initialize logger and callbacks
wandb_logger = WandbLogger(project="llm-finetuning")
checkpoint_callback = ModelCheckpoint(
dirpath="./checkpoints",
filename="model-{epoch:02d}-{step:04d}",
monitor="train_loss",
mode="min",
save_top_k=3,
)
early_stopping = EarlyStopping(
monitor="train_loss",
patience=3,
mode="min",
)
# Training configuration
training_args = TrainingArguments(
output_dir="./fine-tuned-model",
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=1e-5,
weight_decay=0.01,
warmup_steps=50,
logging_steps=10,
save_strategy="epoch",
evaluation_strategy="no",
fp16=False,
gradient_checkpointing=True,
optim="adamw_torch",
lr_scheduler_type="cosine",
remove_unused_columns=False,
report_to="wandb",
dataloader_num_workers=4,
dataloader_pin_memory=True,
torch_compile=True,
max_grad_norm=1.0,
group_by_length=True,
)
# Initialize trainer with memory-optimized settings
trainer = pl.Trainer(
max_epochs=3,
accelerator="gpu",
devices=1,
precision="32",
gradient_clip_val=1.0,
accumulate_grad_batches=4,
log_every_n_steps=10,
val_check_interval=0.5,
callbacks=[
checkpoint_callback,
early_stopping,
],
strategy="auto",
)
# Train the model
console.print("[bold green]Starting training...[/bold green]")
console.print("[bold yellow]Training with optimized settings for RTX 4060 Laptop GPU[/bold yellow]")
console.print(f"Batch size: {model.hparams.batch_size}")
console.print(f"Generations per prompt: {model.hparams.num_generations}")
console.print(f"Max sequence length: {model.hparams.max_length}")
trainer.fit(model)
console.print("[bold green]Training completed![/bold green]")
# Save the model
model.model.save_pretrained("./fine-tuned-model")
model.tokenizer.save_pretrained("./fine-tuned-model")
console.print("[bold green]Model saved successfully![/bold green]")
# Test the model
test_prompt = "What is machine learning?"
console.print("\n[bold blue]Testing the model:[/bold blue]")
console.print(f"Original prompt: {test_prompt}")
inputs = model.tokenizer(test_prompt, return_tensors="pt").to(model.device)
outputs = model.model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
response = model.tokenizer.decode(outputs[0], skip_special_tokens=True)
console.print(f"Generated response: {response}")
if __name__ == "__main__":
main() |