padmanabhbosamia commited on
Commit
a8d6aab
·
verified ·
1 Parent(s): 3b314cb

Upload 12 files

Browse files
app.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3
+ import torch
4
+ from rich.console import Console
5
+ import time
6
+
7
+ # Initialize rich console for better logging
8
+ console = Console()
9
+
10
+ # Load the model and tokenizer with the same configuration as training
11
+ console.print("[bold green]Loading model and tokenizer...[/bold green]")
12
+
13
+ # Configure 4-bit quantization with memory optimizations
14
+ quantization_config = BitsAndBytesConfig(
15
+ load_in_4bit=True,
16
+ bnb_4bit_compute_dtype=torch.float16,
17
+ bnb_4bit_use_double_quant=True,
18
+ bnb_4bit_quant_type="nf4",
19
+ bnb_4bit_quant_storage=torch.float16,
20
+ )
21
+
22
+ # Load model with quantization and memory optimizations
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ "./fine-tuned-model",
25
+ quantization_config=quantization_config,
26
+ device_map="auto",
27
+ trust_remote_code=True,
28
+ torch_dtype=torch.float16,
29
+ )
30
+ tokenizer = AutoTokenizer.from_pretrained("./fine-tuned-model")
31
+ tokenizer.pad_token = tokenizer.eos_token
32
+ tokenizer.padding_side = 'left'
33
+
34
+ def generate_response(
35
+ prompt,
36
+ max_length=128, # Match training max_length
37
+ temperature=0.7,
38
+ top_p=0.9,
39
+ num_generations=2, # Match training num_generations
40
+ repetition_penalty=1.1,
41
+ do_sample=True,
42
+ ):
43
+ try:
44
+ # Get the device of the model
45
+ device = next(model.parameters()).device
46
+
47
+ # Tokenize the input
48
+ inputs = tokenizer(prompt, return_tensors="pt", padding=True)
49
+
50
+ # Move inputs to the same device as the model
51
+ inputs = {k: v.to(device) for k, v in inputs.items()}
52
+
53
+ # Generate response
54
+ with torch.no_grad(): # Disable gradient computation
55
+ outputs = model.generate(
56
+ **inputs,
57
+ max_new_tokens=max_length,
58
+ do_sample=do_sample,
59
+ temperature=temperature,
60
+ top_p=top_p,
61
+ num_return_sequences=num_generations,
62
+ repetition_penalty=repetition_penalty,
63
+ pad_token_id=tokenizer.eos_token_id,
64
+ eos_token_id=tokenizer.eos_token_id,
65
+ )
66
+
67
+ # Decode and return the responses
68
+ responses = []
69
+ for output in outputs:
70
+ response = tokenizer.decode(output, skip_special_tokens=True)
71
+ responses.append(response)
72
+
73
+ return "\n\n---\n\n".join(responses)
74
+ except Exception as e:
75
+ console.print(f"[bold red]Error during generation: {str(e)}[/bold red]")
76
+ return f"Error: {str(e)}"
77
+
78
+ # Create custom CSS for better UI
79
+ custom_css = """
80
+ .gradio-container {
81
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
82
+ }
83
+ .container {
84
+ max-width: 800px;
85
+ margin: auto;
86
+ padding: 20px;
87
+ }
88
+ .title {
89
+ text-align: center;
90
+ color: #2c3e50;
91
+ margin-bottom: 20px;
92
+ }
93
+ .description {
94
+ color: #34495e;
95
+ line-height: 1.6;
96
+ margin-bottom: 20px;
97
+ }
98
+ """
99
+
100
+ # Create the Gradio interface with enhanced UI
101
+ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
102
+ gr.Markdown(
103
+ """
104
+ # Phi-2 Fine-tuned with GRPO and qLoRA
105
+ This model has been fine-tuned using GRPO (Generative Reward-Penalized Optimization) and compressed using qLoRA.
106
+ Try it out with different prompts and generation parameters!
107
+ """,
108
+ elem_classes="title"
109
+ )
110
+
111
+ with gr.Row():
112
+ with gr.Column(scale=2):
113
+ prompt = gr.Textbox(
114
+ label="Prompt",
115
+ placeholder="Enter your prompt here...",
116
+ lines=3,
117
+ show_label=True,
118
+ )
119
+
120
+ with gr.Row():
121
+ with gr.Column():
122
+ max_length = gr.Slider(
123
+ minimum=32,
124
+ maximum=256,
125
+ value=128,
126
+ step=32,
127
+ label="Max Length",
128
+ info="Maximum number of tokens to generate"
129
+ )
130
+ temperature = gr.Slider(
131
+ minimum=0.1,
132
+ maximum=1.0,
133
+ value=0.7,
134
+ step=0.1,
135
+ label="Temperature",
136
+ info="Higher values make output more random, lower values more deterministic"
137
+ )
138
+ with gr.Column():
139
+ top_p = gr.Slider(
140
+ minimum=0.1,
141
+ maximum=1.0,
142
+ value=0.9,
143
+ step=0.1,
144
+ label="Top-p",
145
+ info="Nucleus sampling parameter"
146
+ )
147
+ num_generations = gr.Slider(
148
+ minimum=1,
149
+ maximum=4,
150
+ value=2,
151
+ step=1,
152
+ label="Number of Generations",
153
+ info="Number of different responses to generate"
154
+ )
155
+
156
+ with gr.Row():
157
+ with gr.Column():
158
+ repetition_penalty = gr.Slider(
159
+ minimum=1.0,
160
+ maximum=2.0,
161
+ value=1.1,
162
+ step=0.1,
163
+ label="Repetition Penalty",
164
+ info="Higher values prevent repetition"
165
+ )
166
+ with gr.Column():
167
+ do_sample = gr.Checkbox(
168
+ value=True,
169
+ label="Enable Sampling",
170
+ info="Enable/disable sampling for deterministic output"
171
+ )
172
+
173
+ generate_btn = gr.Button("Generate", variant="primary")
174
+
175
+ with gr.Column(scale=3):
176
+ output = gr.Textbox(
177
+ label="Generated Response(s)",
178
+ lines=10,
179
+ show_label=True,
180
+ )
181
+
182
+ gr.Markdown(
183
+ """
184
+ ### Example Prompts
185
+ Try these example prompts to test the model:
186
+
187
+ 1. **Technical Question**: "What is machine learning?"
188
+ 2. **Creative Writing**: "Write a short story about a robot learning to paint."
189
+ 3. **Technical Explanation**: "Explain quantum computing in simple terms."
190
+ 4. **Creative Writing**: "Write a poem about artificial intelligence."
191
+ """,
192
+ elem_classes="description"
193
+ )
194
+
195
+ # Add examples
196
+ gr.Examples(
197
+ examples=[
198
+ ["What is machine learning?"],
199
+ ["Write a short story about a robot learning to paint."],
200
+ ["Explain quantum computing in simple terms."],
201
+ ["Write a poem about artificial intelligence."]
202
+ ],
203
+ inputs=prompt
204
+ )
205
+
206
+ # Connect the interface
207
+ generate_btn.click(
208
+ fn=generate_response,
209
+ inputs=[
210
+ prompt,
211
+ max_length,
212
+ temperature,
213
+ top_p,
214
+ num_generations,
215
+ repetition_penalty,
216
+ do_sample
217
+ ],
218
+ outputs=output
219
+ )
220
+
221
+ if __name__ == "__main__":
222
+ console.print("[bold green]Starting Gradio interface...[/bold green]")
223
+ demo.launch(
224
+ server_name="0.0.0.0",
225
+ server_port=7860,
226
+ share=True # Enable sharing for HuggingFace Spaces
227
+ )
fine-tuned-model/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/phi-2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
fine-tuned-model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/phi-2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "v_proj",
28
+ "k_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
fine-tuned-model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1491777fce601097323585d69288bc5376d647628f0673c54196edaf47692f9
3
+ size 31483040
fine-tuned-model/added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
fine-tuned-model/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
fine-tuned-model/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
fine-tuned-model/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
fine-tuned-model/tokenizer_config.json ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "bos_token": "<|endoftext|>",
318
+ "clean_up_tokenization_spaces": true,
319
+ "eos_token": "<|endoftext|>",
320
+ "extra_special_tokens": {},
321
+ "model_max_length": 2048,
322
+ "pad_token": "<|endoftext|>",
323
+ "return_token_type_ids": false,
324
+ "tokenizer_class": "CodeGenTokenizer",
325
+ "unk_token": "<|endoftext|>"
326
+ }
fine-tuned-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch>=2.0.0
2
+ transformers>=4.30.0
3
+ datasets>=2.12.0
4
+ accelerate>=0.20.0
5
+ bitsandbytes>=0.41.0
6
+ peft>=0.4.0
7
+ pytorch-lightning>=2.0.0
8
+ gradio>=3.40.0
9
+ wandb>=0.15.0
10
+ rich>=13.0.0
11
+ sentencepiece>=0.1.99
12
+ protobuf>=4.23.0
train.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import pytorch_lightning as pl
4
+ from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
5
+ from pytorch_lightning.loggers import WandbLogger
6
+ from datasets import load_dataset
7
+ from transformers import (
8
+ AutoModelForCausalLM,
9
+ AutoTokenizer,
10
+ get_linear_schedule_with_warmup,
11
+ BitsAndBytesConfig,
12
+ TrainingArguments,
13
+ )
14
+ from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
15
+ from rich.console import Console
16
+ from torch.utils.data import Dataset, DataLoader
17
+
18
+ # Enable Tensor Core optimization for RTX GPUs
19
+ torch.set_float32_matmul_precision('medium')
20
+
21
+ # Initialize rich console for better logging
22
+ console = Console()
23
+
24
+ class TextDataset(Dataset):
25
+ def __init__(self, dataset, tokenizer, max_length=512):
26
+ self.dataset = dataset
27
+ self.tokenizer = tokenizer
28
+ self.max_length = max_length
29
+
30
+ # Ensure tokenizer has a padding token
31
+ if self.tokenizer.pad_token is None:
32
+ self.tokenizer.pad_token = self.tokenizer.eos_token
33
+ if self.tokenizer.pad_token is None:
34
+ self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
35
+
36
+ def __len__(self):
37
+ return len(self.dataset)
38
+
39
+ def __getitem__(self, idx):
40
+ item = self.dataset[idx]
41
+ # Combine instruction and input if they exist
42
+ prompt = item.get("instruction", "")
43
+ if item.get("input"):
44
+ prompt += "\n" + item["input"]
45
+
46
+ # Tokenize the prompt
47
+ encoding = self.tokenizer(
48
+ prompt,
49
+ max_length=self.max_length,
50
+ padding="max_length",
51
+ truncation=True,
52
+ return_tensors="pt"
53
+ )
54
+
55
+ return {
56
+ "input_ids": encoding["input_ids"].squeeze(),
57
+ "attention_mask": encoding["attention_mask"].squeeze(),
58
+ "prompt": prompt
59
+ }
60
+
61
+ class GRPOModel(pl.LightningModule):
62
+ def __init__(
63
+ self,
64
+ model_name="microsoft/phi-2",
65
+ learning_rate=2e-5,
66
+ num_train_epochs=3,
67
+ warmup_steps=100,
68
+ batch_size=2,
69
+ max_length=128,
70
+ beta=0.04,
71
+ num_generations=2,
72
+ train_dataset=None,
73
+ ):
74
+ super().__init__()
75
+ self.save_hyperparameters()
76
+
77
+ # Store train dataset
78
+ self.train_dataset = train_dataset
79
+
80
+ # Configure 4-bit quantization with memory optimizations
81
+ quantization_config = BitsAndBytesConfig(
82
+ load_in_4bit=True,
83
+ bnb_4bit_compute_dtype=torch.float16,
84
+ bnb_4bit_use_double_quant=True,
85
+ bnb_4bit_quant_type="nf4",
86
+ bnb_4bit_quant_storage=torch.float16,
87
+ )
88
+
89
+ # Load model with quantization and memory optimizations
90
+ self.model = AutoModelForCausalLM.from_pretrained(
91
+ model_name,
92
+ quantization_config=quantization_config,
93
+ device_map="auto",
94
+ trust_remote_code=True,
95
+ torch_dtype=torch.float16,
96
+ )
97
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
98
+ self.tokenizer.pad_token = self.tokenizer.eos_token
99
+ self.tokenizer.padding_side = 'left'
100
+
101
+ # Prepare model for training
102
+ self.model = prepare_model_for_kbit_training(self.model)
103
+
104
+ # LoRA configuration
105
+ lora_config = LoraConfig(
106
+ r=16,
107
+ lora_alpha=32,
108
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
109
+ lora_dropout=0.05,
110
+ bias="none",
111
+ task_type="CAUSAL_LM"
112
+ )
113
+
114
+ self.model = get_peft_model(self.model, lora_config)
115
+
116
+ # Store model name for reference model
117
+ self.model_name = model_name
118
+ self.ref_model = None
119
+
120
+ def setup(self, stage=None):
121
+ # Move model to the correct device after initialization
122
+ if stage == "fit":
123
+ self.model = self.model.to(self.device)
124
+
125
+ def get_reference_model(self):
126
+ if self.ref_model is None:
127
+ # Load reference model with quantization
128
+ quantization_config = BitsAndBytesConfig(
129
+ load_in_4bit=True,
130
+ bnb_4bit_compute_dtype=torch.float16,
131
+ bnb_4bit_use_double_quant=True,
132
+ bnb_4bit_quant_type="nf4",
133
+ )
134
+ self.ref_model = AutoModelForCausalLM.from_pretrained(
135
+ self.model_name,
136
+ quantization_config=quantization_config,
137
+ device_map=None,
138
+ trust_remote_code=True,
139
+ )
140
+ self.ref_model.eval()
141
+ self.ref_model = self.ref_model.to(self.device)
142
+ return self.ref_model
143
+
144
+ def reward_function(self, completions):
145
+ rewards = []
146
+ for completion in completions:
147
+ # Reward based on length (normalized)
148
+ length_reward = len(completion.split()) / 100
149
+
150
+ # Reward based on diversity (unique words)
151
+ unique_words = len(set(completion.lower().split()))
152
+ diversity_reward = unique_words / len(completion.split())
153
+
154
+ # Combined reward
155
+ reward = 0.7 * length_reward + 0.3 * diversity_reward
156
+ rewards.append(reward)
157
+
158
+ return torch.tensor(rewards, device=self.device)
159
+
160
+ def forward(self, input_ids, attention_mask):
161
+ outputs = self.model(
162
+ input_ids=input_ids,
163
+ attention_mask=attention_mask,
164
+ return_dict=True
165
+ )
166
+ return outputs.logits
167
+
168
+ def training_step(self, batch, batch_idx):
169
+ # Generate completions
170
+ input_ids = batch["input_ids"]
171
+ attention_mask = batch["attention_mask"]
172
+ prompts = batch["prompt"]
173
+
174
+ # Generate multiple completions for each prompt
175
+ all_completions = []
176
+ for _ in range(self.hparams.num_generations):
177
+ outputs = self.model.generate(
178
+ input_ids=input_ids,
179
+ attention_mask=attention_mask,
180
+ max_new_tokens=128,
181
+ do_sample=True,
182
+ temperature=0.7,
183
+ top_p=0.9,
184
+ pad_token_id=self.tokenizer.eos_token_id
185
+ )
186
+ completions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
187
+ all_completions.extend(completions)
188
+
189
+ # Calculate rewards
190
+ rewards = self.reward_function(all_completions)
191
+
192
+ # Calculate KL divergence
193
+ ref_model = self.get_reference_model()
194
+ with torch.no_grad():
195
+ ref_outputs = ref_model(
196
+ input_ids=input_ids,
197
+ attention_mask=attention_mask,
198
+ return_dict=True
199
+ )
200
+ ref_logits = ref_outputs.logits
201
+
202
+ policy_logits = self(input_ids, attention_mask)
203
+ kl_div = torch.nn.functional.kl_div(
204
+ torch.nn.functional.log_softmax(policy_logits, dim=-1),
205
+ torch.nn.functional.softmax(ref_logits, dim=-1),
206
+ reduction='batchmean'
207
+ )
208
+
209
+ # Calculate GRPO loss
210
+ loss = -rewards.mean() + self.hparams.beta * kl_div
211
+
212
+ self.log("train_loss", loss)
213
+ self.log("train_reward", rewards.mean())
214
+ self.log("train_kl_div", kl_div)
215
+
216
+ return loss
217
+
218
+ def configure_optimizers(self):
219
+ optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
220
+ scheduler = get_linear_schedule_with_warmup(
221
+ optimizer,
222
+ num_warmup_steps=self.hparams.warmup_steps,
223
+ num_training_steps=self.hparams.num_train_epochs * len(self.train_dataloader())
224
+ )
225
+ return {
226
+ "optimizer": optimizer,
227
+ "lr_scheduler": {
228
+ "scheduler": scheduler,
229
+ "monitor": "train_loss",
230
+ "frequency": 1
231
+ }
232
+ }
233
+
234
+ def on_train_end(self):
235
+ # Clean up reference model to free memory
236
+ if self.ref_model is not None:
237
+ del self.ref_model
238
+ self.ref_model = None
239
+ torch.cuda.empty_cache()
240
+
241
+ def train_dataloader(self):
242
+ if self.train_dataset is None:
243
+ raise ValueError("Train dataset not provided")
244
+ return DataLoader(
245
+ self.train_dataset,
246
+ batch_size=self.hparams.batch_size,
247
+ shuffle=True,
248
+ num_workers=4,
249
+ persistent_workers=True,
250
+ pin_memory=True
251
+ )
252
+
253
+ class TextDataModule(pl.LightningDataModule):
254
+ def __init__(
255
+ self,
256
+ tokenizer,
257
+ max_length=256,
258
+ batch_size=4,
259
+ num_workers=4,
260
+ pin_memory=True,
261
+ ):
262
+ super().__init__()
263
+ self.tokenizer = tokenizer
264
+ self.max_length = max_length
265
+ self.batch_size = batch_size
266
+ self.num_workers = num_workers
267
+ self.pin_memory = pin_memory
268
+
269
+ def main():
270
+ # Load dataset
271
+ dataset = load_dataset("tatsu-lab/alpaca")
272
+ train_dataset = dataset["train"].select(range(500))
273
+
274
+ # Initialize tokenizer with left padding
275
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
276
+ tokenizer.pad_token = tokenizer.eos_token
277
+ tokenizer.padding_side = 'left'
278
+
279
+ # Create dataset with reduced max length
280
+ train_dataset = TextDataset(train_dataset, tokenizer, max_length=128)
281
+
282
+ # Initialize model with optimized parameters for RTX 4060 Laptop
283
+ model = GRPOModel(
284
+ train_dataset=train_dataset,
285
+ batch_size=2,
286
+ num_generations=2,
287
+ max_length=128,
288
+ learning_rate=1e-5,
289
+ beta=0.02,
290
+ )
291
+
292
+ # Initialize logger and callbacks
293
+ wandb_logger = WandbLogger(project="llm-finetuning")
294
+ checkpoint_callback = ModelCheckpoint(
295
+ dirpath="./checkpoints",
296
+ filename="model-{epoch:02d}-{step:04d}",
297
+ monitor="train_loss",
298
+ mode="min",
299
+ save_top_k=3,
300
+ )
301
+ early_stopping = EarlyStopping(
302
+ monitor="train_loss",
303
+ patience=3,
304
+ mode="min",
305
+ )
306
+
307
+ # Training configuration
308
+ training_args = TrainingArguments(
309
+ output_dir="./fine-tuned-model",
310
+ num_train_epochs=3,
311
+ per_device_train_batch_size=2,
312
+ gradient_accumulation_steps=4,
313
+ learning_rate=1e-5,
314
+ weight_decay=0.01,
315
+ warmup_steps=50,
316
+ logging_steps=10,
317
+ save_strategy="epoch",
318
+ evaluation_strategy="no",
319
+ fp16=False,
320
+ gradient_checkpointing=True,
321
+ optim="adamw_torch",
322
+ lr_scheduler_type="cosine",
323
+ remove_unused_columns=False,
324
+ report_to="wandb",
325
+ dataloader_num_workers=4,
326
+ dataloader_pin_memory=True,
327
+ torch_compile=True,
328
+ max_grad_norm=1.0,
329
+ group_by_length=True,
330
+ )
331
+
332
+ # Initialize trainer with memory-optimized settings
333
+ trainer = pl.Trainer(
334
+ max_epochs=3,
335
+ accelerator="gpu",
336
+ devices=1,
337
+ precision="32",
338
+ gradient_clip_val=1.0,
339
+ accumulate_grad_batches=4,
340
+ log_every_n_steps=10,
341
+ val_check_interval=0.5,
342
+ callbacks=[
343
+ checkpoint_callback,
344
+ early_stopping,
345
+ ],
346
+ strategy="auto",
347
+ )
348
+
349
+ # Train the model
350
+ console.print("[bold green]Starting training...[/bold green]")
351
+ console.print("[bold yellow]Training with optimized settings for RTX 4060 Laptop GPU[/bold yellow]")
352
+ console.print(f"Batch size: {model.hparams.batch_size}")
353
+ console.print(f"Generations per prompt: {model.hparams.num_generations}")
354
+ console.print(f"Max sequence length: {model.hparams.max_length}")
355
+ trainer.fit(model)
356
+ console.print("[bold green]Training completed![/bold green]")
357
+
358
+ # Save the model
359
+ model.model.save_pretrained("./fine-tuned-model")
360
+ model.tokenizer.save_pretrained("./fine-tuned-model")
361
+ console.print("[bold green]Model saved successfully![/bold green]")
362
+
363
+ # Test the model
364
+ test_prompt = "What is machine learning?"
365
+ console.print("\n[bold blue]Testing the model:[/bold blue]")
366
+ console.print(f"Original prompt: {test_prompt}")
367
+
368
+ inputs = model.tokenizer(test_prompt, return_tensors="pt").to(model.device)
369
+ outputs = model.model.generate(
370
+ **inputs,
371
+ max_new_tokens=128,
372
+ do_sample=True,
373
+ temperature=0.7,
374
+ top_p=0.9,
375
+ )
376
+ response = model.tokenizer.decode(outputs[0], skip_special_tokens=True)
377
+ console.print(f"Generated response: {response}")
378
+
379
+ if __name__ == "__main__":
380
+ main()