Spaces:
Running
Running
Upload 12 files
Browse files- app.py +227 -0
- fine-tuned-model/README.md +202 -0
- fine-tuned-model/adapter_config.json +34 -0
- fine-tuned-model/adapter_model.safetensors +3 -0
- fine-tuned-model/added_tokens.json +40 -0
- fine-tuned-model/merges.txt +0 -0
- fine-tuned-model/special_tokens_map.json +24 -0
- fine-tuned-model/tokenizer.json +0 -0
- fine-tuned-model/tokenizer_config.json +326 -0
- fine-tuned-model/vocab.json +0 -0
- requirements.txt +12 -0
- train.py +380 -0
app.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
+
import torch
|
4 |
+
from rich.console import Console
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Initialize rich console for better logging
|
8 |
+
console = Console()
|
9 |
+
|
10 |
+
# Load the model and tokenizer with the same configuration as training
|
11 |
+
console.print("[bold green]Loading model and tokenizer...[/bold green]")
|
12 |
+
|
13 |
+
# Configure 4-bit quantization with memory optimizations
|
14 |
+
quantization_config = BitsAndBytesConfig(
|
15 |
+
load_in_4bit=True,
|
16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
17 |
+
bnb_4bit_use_double_quant=True,
|
18 |
+
bnb_4bit_quant_type="nf4",
|
19 |
+
bnb_4bit_quant_storage=torch.float16,
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load model with quantization and memory optimizations
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
"./fine-tuned-model",
|
25 |
+
quantization_config=quantization_config,
|
26 |
+
device_map="auto",
|
27 |
+
trust_remote_code=True,
|
28 |
+
torch_dtype=torch.float16,
|
29 |
+
)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("./fine-tuned-model")
|
31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
32 |
+
tokenizer.padding_side = 'left'
|
33 |
+
|
34 |
+
def generate_response(
|
35 |
+
prompt,
|
36 |
+
max_length=128, # Match training max_length
|
37 |
+
temperature=0.7,
|
38 |
+
top_p=0.9,
|
39 |
+
num_generations=2, # Match training num_generations
|
40 |
+
repetition_penalty=1.1,
|
41 |
+
do_sample=True,
|
42 |
+
):
|
43 |
+
try:
|
44 |
+
# Get the device of the model
|
45 |
+
device = next(model.parameters()).device
|
46 |
+
|
47 |
+
# Tokenize the input
|
48 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
49 |
+
|
50 |
+
# Move inputs to the same device as the model
|
51 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
52 |
+
|
53 |
+
# Generate response
|
54 |
+
with torch.no_grad(): # Disable gradient computation
|
55 |
+
outputs = model.generate(
|
56 |
+
**inputs,
|
57 |
+
max_new_tokens=max_length,
|
58 |
+
do_sample=do_sample,
|
59 |
+
temperature=temperature,
|
60 |
+
top_p=top_p,
|
61 |
+
num_return_sequences=num_generations,
|
62 |
+
repetition_penalty=repetition_penalty,
|
63 |
+
pad_token_id=tokenizer.eos_token_id,
|
64 |
+
eos_token_id=tokenizer.eos_token_id,
|
65 |
+
)
|
66 |
+
|
67 |
+
# Decode and return the responses
|
68 |
+
responses = []
|
69 |
+
for output in outputs:
|
70 |
+
response = tokenizer.decode(output, skip_special_tokens=True)
|
71 |
+
responses.append(response)
|
72 |
+
|
73 |
+
return "\n\n---\n\n".join(responses)
|
74 |
+
except Exception as e:
|
75 |
+
console.print(f"[bold red]Error during generation: {str(e)}[/bold red]")
|
76 |
+
return f"Error: {str(e)}"
|
77 |
+
|
78 |
+
# Create custom CSS for better UI
|
79 |
+
custom_css = """
|
80 |
+
.gradio-container {
|
81 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
82 |
+
}
|
83 |
+
.container {
|
84 |
+
max-width: 800px;
|
85 |
+
margin: auto;
|
86 |
+
padding: 20px;
|
87 |
+
}
|
88 |
+
.title {
|
89 |
+
text-align: center;
|
90 |
+
color: #2c3e50;
|
91 |
+
margin-bottom: 20px;
|
92 |
+
}
|
93 |
+
.description {
|
94 |
+
color: #34495e;
|
95 |
+
line-height: 1.6;
|
96 |
+
margin-bottom: 20px;
|
97 |
+
}
|
98 |
+
"""
|
99 |
+
|
100 |
+
# Create the Gradio interface with enhanced UI
|
101 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
102 |
+
gr.Markdown(
|
103 |
+
"""
|
104 |
+
# Phi-2 Fine-tuned with GRPO and qLoRA
|
105 |
+
This model has been fine-tuned using GRPO (Generative Reward-Penalized Optimization) and compressed using qLoRA.
|
106 |
+
Try it out with different prompts and generation parameters!
|
107 |
+
""",
|
108 |
+
elem_classes="title"
|
109 |
+
)
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column(scale=2):
|
113 |
+
prompt = gr.Textbox(
|
114 |
+
label="Prompt",
|
115 |
+
placeholder="Enter your prompt here...",
|
116 |
+
lines=3,
|
117 |
+
show_label=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
max_length = gr.Slider(
|
123 |
+
minimum=32,
|
124 |
+
maximum=256,
|
125 |
+
value=128,
|
126 |
+
step=32,
|
127 |
+
label="Max Length",
|
128 |
+
info="Maximum number of tokens to generate"
|
129 |
+
)
|
130 |
+
temperature = gr.Slider(
|
131 |
+
minimum=0.1,
|
132 |
+
maximum=1.0,
|
133 |
+
value=0.7,
|
134 |
+
step=0.1,
|
135 |
+
label="Temperature",
|
136 |
+
info="Higher values make output more random, lower values more deterministic"
|
137 |
+
)
|
138 |
+
with gr.Column():
|
139 |
+
top_p = gr.Slider(
|
140 |
+
minimum=0.1,
|
141 |
+
maximum=1.0,
|
142 |
+
value=0.9,
|
143 |
+
step=0.1,
|
144 |
+
label="Top-p",
|
145 |
+
info="Nucleus sampling parameter"
|
146 |
+
)
|
147 |
+
num_generations = gr.Slider(
|
148 |
+
minimum=1,
|
149 |
+
maximum=4,
|
150 |
+
value=2,
|
151 |
+
step=1,
|
152 |
+
label="Number of Generations",
|
153 |
+
info="Number of different responses to generate"
|
154 |
+
)
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column():
|
158 |
+
repetition_penalty = gr.Slider(
|
159 |
+
minimum=1.0,
|
160 |
+
maximum=2.0,
|
161 |
+
value=1.1,
|
162 |
+
step=0.1,
|
163 |
+
label="Repetition Penalty",
|
164 |
+
info="Higher values prevent repetition"
|
165 |
+
)
|
166 |
+
with gr.Column():
|
167 |
+
do_sample = gr.Checkbox(
|
168 |
+
value=True,
|
169 |
+
label="Enable Sampling",
|
170 |
+
info="Enable/disable sampling for deterministic output"
|
171 |
+
)
|
172 |
+
|
173 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
174 |
+
|
175 |
+
with gr.Column(scale=3):
|
176 |
+
output = gr.Textbox(
|
177 |
+
label="Generated Response(s)",
|
178 |
+
lines=10,
|
179 |
+
show_label=True,
|
180 |
+
)
|
181 |
+
|
182 |
+
gr.Markdown(
|
183 |
+
"""
|
184 |
+
### Example Prompts
|
185 |
+
Try these example prompts to test the model:
|
186 |
+
|
187 |
+
1. **Technical Question**: "What is machine learning?"
|
188 |
+
2. **Creative Writing**: "Write a short story about a robot learning to paint."
|
189 |
+
3. **Technical Explanation**: "Explain quantum computing in simple terms."
|
190 |
+
4. **Creative Writing**: "Write a poem about artificial intelligence."
|
191 |
+
""",
|
192 |
+
elem_classes="description"
|
193 |
+
)
|
194 |
+
|
195 |
+
# Add examples
|
196 |
+
gr.Examples(
|
197 |
+
examples=[
|
198 |
+
["What is machine learning?"],
|
199 |
+
["Write a short story about a robot learning to paint."],
|
200 |
+
["Explain quantum computing in simple terms."],
|
201 |
+
["Write a poem about artificial intelligence."]
|
202 |
+
],
|
203 |
+
inputs=prompt
|
204 |
+
)
|
205 |
+
|
206 |
+
# Connect the interface
|
207 |
+
generate_btn.click(
|
208 |
+
fn=generate_response,
|
209 |
+
inputs=[
|
210 |
+
prompt,
|
211 |
+
max_length,
|
212 |
+
temperature,
|
213 |
+
top_p,
|
214 |
+
num_generations,
|
215 |
+
repetition_penalty,
|
216 |
+
do_sample
|
217 |
+
],
|
218 |
+
outputs=output
|
219 |
+
)
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
console.print("[bold green]Starting Gradio interface...[/bold green]")
|
223 |
+
demo.launch(
|
224 |
+
server_name="0.0.0.0",
|
225 |
+
server_port=7860,
|
226 |
+
share=True # Enable sharing for HuggingFace Spaces
|
227 |
+
)
|
fine-tuned-model/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/phi-2
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
fine-tuned-model/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "microsoft/phi-2",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 16,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"q_proj",
|
27 |
+
"v_proj",
|
28 |
+
"k_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
fine-tuned-model/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1491777fce601097323585d69288bc5376d647628f0673c54196edaf47692f9
|
3 |
+
size 31483040
|
fine-tuned-model/added_tokens.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257
|
40 |
+
}
|
fine-tuned-model/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fine-tuned-model/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
fine-tuned-model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fine-tuned-model/tokenizer_config.json
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"50257": {
|
13 |
+
"content": " ",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": false
|
19 |
+
},
|
20 |
+
"50258": {
|
21 |
+
"content": " ",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"50259": {
|
29 |
+
"content": " ",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"50260": {
|
37 |
+
"content": " ",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"50261": {
|
45 |
+
"content": " ",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"50262": {
|
53 |
+
"content": " ",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"50263": {
|
61 |
+
"content": " ",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"50264": {
|
69 |
+
"content": " ",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"50265": {
|
77 |
+
"content": " ",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"50266": {
|
85 |
+
"content": " ",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"50267": {
|
93 |
+
"content": " ",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"50268": {
|
101 |
+
"content": " ",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"50269": {
|
109 |
+
"content": " ",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"50270": {
|
117 |
+
"content": " ",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"50271": {
|
125 |
+
"content": " ",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"50272": {
|
133 |
+
"content": " ",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"50273": {
|
141 |
+
"content": " ",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"50274": {
|
149 |
+
"content": " ",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"50275": {
|
157 |
+
"content": " ",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"50276": {
|
165 |
+
"content": " ",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"50277": {
|
173 |
+
"content": " ",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"50278": {
|
181 |
+
"content": " ",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"50279": {
|
189 |
+
"content": " ",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"50280": {
|
197 |
+
"content": " ",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
},
|
204 |
+
"50281": {
|
205 |
+
"content": " ",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": true,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": false
|
211 |
+
},
|
212 |
+
"50282": {
|
213 |
+
"content": " ",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": true,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": false
|
219 |
+
},
|
220 |
+
"50283": {
|
221 |
+
"content": " ",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": true,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": false
|
227 |
+
},
|
228 |
+
"50284": {
|
229 |
+
"content": " ",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": true,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": false
|
235 |
+
},
|
236 |
+
"50285": {
|
237 |
+
"content": " ",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": true,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": false
|
243 |
+
},
|
244 |
+
"50286": {
|
245 |
+
"content": " ",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": true,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": false
|
251 |
+
},
|
252 |
+
"50287": {
|
253 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": true,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": false
|
259 |
+
},
|
260 |
+
"50288": {
|
261 |
+
"content": "\t\t\t\t\t\t\t\t",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": true,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": false
|
267 |
+
},
|
268 |
+
"50289": {
|
269 |
+
"content": "\t\t\t\t\t\t\t",
|
270 |
+
"lstrip": false,
|
271 |
+
"normalized": true,
|
272 |
+
"rstrip": false,
|
273 |
+
"single_word": false,
|
274 |
+
"special": false
|
275 |
+
},
|
276 |
+
"50290": {
|
277 |
+
"content": "\t\t\t\t\t\t",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": true,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false,
|
282 |
+
"special": false
|
283 |
+
},
|
284 |
+
"50291": {
|
285 |
+
"content": "\t\t\t\t\t",
|
286 |
+
"lstrip": false,
|
287 |
+
"normalized": true,
|
288 |
+
"rstrip": false,
|
289 |
+
"single_word": false,
|
290 |
+
"special": false
|
291 |
+
},
|
292 |
+
"50292": {
|
293 |
+
"content": "\t\t\t\t",
|
294 |
+
"lstrip": false,
|
295 |
+
"normalized": true,
|
296 |
+
"rstrip": false,
|
297 |
+
"single_word": false,
|
298 |
+
"special": false
|
299 |
+
},
|
300 |
+
"50293": {
|
301 |
+
"content": "\t\t\t",
|
302 |
+
"lstrip": false,
|
303 |
+
"normalized": true,
|
304 |
+
"rstrip": false,
|
305 |
+
"single_word": false,
|
306 |
+
"special": false
|
307 |
+
},
|
308 |
+
"50294": {
|
309 |
+
"content": "\t\t",
|
310 |
+
"lstrip": false,
|
311 |
+
"normalized": true,
|
312 |
+
"rstrip": false,
|
313 |
+
"single_word": false,
|
314 |
+
"special": false
|
315 |
+
}
|
316 |
+
},
|
317 |
+
"bos_token": "<|endoftext|>",
|
318 |
+
"clean_up_tokenization_spaces": true,
|
319 |
+
"eos_token": "<|endoftext|>",
|
320 |
+
"extra_special_tokens": {},
|
321 |
+
"model_max_length": 2048,
|
322 |
+
"pad_token": "<|endoftext|>",
|
323 |
+
"return_token_type_ids": false,
|
324 |
+
"tokenizer_class": "CodeGenTokenizer",
|
325 |
+
"unk_token": "<|endoftext|>"
|
326 |
+
}
|
fine-tuned-model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
transformers>=4.30.0
|
3 |
+
datasets>=2.12.0
|
4 |
+
accelerate>=0.20.0
|
5 |
+
bitsandbytes>=0.41.0
|
6 |
+
peft>=0.4.0
|
7 |
+
pytorch-lightning>=2.0.0
|
8 |
+
gradio>=3.40.0
|
9 |
+
wandb>=0.15.0
|
10 |
+
rich>=13.0.0
|
11 |
+
sentencepiece>=0.1.99
|
12 |
+
protobuf>=4.23.0
|
train.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
5 |
+
from pytorch_lightning.loggers import WandbLogger
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import (
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
AutoTokenizer,
|
10 |
+
get_linear_schedule_with_warmup,
|
11 |
+
BitsAndBytesConfig,
|
12 |
+
TrainingArguments,
|
13 |
+
)
|
14 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
15 |
+
from rich.console import Console
|
16 |
+
from torch.utils.data import Dataset, DataLoader
|
17 |
+
|
18 |
+
# Enable Tensor Core optimization for RTX GPUs
|
19 |
+
torch.set_float32_matmul_precision('medium')
|
20 |
+
|
21 |
+
# Initialize rich console for better logging
|
22 |
+
console = Console()
|
23 |
+
|
24 |
+
class TextDataset(Dataset):
|
25 |
+
def __init__(self, dataset, tokenizer, max_length=512):
|
26 |
+
self.dataset = dataset
|
27 |
+
self.tokenizer = tokenizer
|
28 |
+
self.max_length = max_length
|
29 |
+
|
30 |
+
# Ensure tokenizer has a padding token
|
31 |
+
if self.tokenizer.pad_token is None:
|
32 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
33 |
+
if self.tokenizer.pad_token is None:
|
34 |
+
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return len(self.dataset)
|
38 |
+
|
39 |
+
def __getitem__(self, idx):
|
40 |
+
item = self.dataset[idx]
|
41 |
+
# Combine instruction and input if they exist
|
42 |
+
prompt = item.get("instruction", "")
|
43 |
+
if item.get("input"):
|
44 |
+
prompt += "\n" + item["input"]
|
45 |
+
|
46 |
+
# Tokenize the prompt
|
47 |
+
encoding = self.tokenizer(
|
48 |
+
prompt,
|
49 |
+
max_length=self.max_length,
|
50 |
+
padding="max_length",
|
51 |
+
truncation=True,
|
52 |
+
return_tensors="pt"
|
53 |
+
)
|
54 |
+
|
55 |
+
return {
|
56 |
+
"input_ids": encoding["input_ids"].squeeze(),
|
57 |
+
"attention_mask": encoding["attention_mask"].squeeze(),
|
58 |
+
"prompt": prompt
|
59 |
+
}
|
60 |
+
|
61 |
+
class GRPOModel(pl.LightningModule):
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
model_name="microsoft/phi-2",
|
65 |
+
learning_rate=2e-5,
|
66 |
+
num_train_epochs=3,
|
67 |
+
warmup_steps=100,
|
68 |
+
batch_size=2,
|
69 |
+
max_length=128,
|
70 |
+
beta=0.04,
|
71 |
+
num_generations=2,
|
72 |
+
train_dataset=None,
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
self.save_hyperparameters()
|
76 |
+
|
77 |
+
# Store train dataset
|
78 |
+
self.train_dataset = train_dataset
|
79 |
+
|
80 |
+
# Configure 4-bit quantization with memory optimizations
|
81 |
+
quantization_config = BitsAndBytesConfig(
|
82 |
+
load_in_4bit=True,
|
83 |
+
bnb_4bit_compute_dtype=torch.float16,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type="nf4",
|
86 |
+
bnb_4bit_quant_storage=torch.float16,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Load model with quantization and memory optimizations
|
90 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
91 |
+
model_name,
|
92 |
+
quantization_config=quantization_config,
|
93 |
+
device_map="auto",
|
94 |
+
trust_remote_code=True,
|
95 |
+
torch_dtype=torch.float16,
|
96 |
+
)
|
97 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
98 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
99 |
+
self.tokenizer.padding_side = 'left'
|
100 |
+
|
101 |
+
# Prepare model for training
|
102 |
+
self.model = prepare_model_for_kbit_training(self.model)
|
103 |
+
|
104 |
+
# LoRA configuration
|
105 |
+
lora_config = LoraConfig(
|
106 |
+
r=16,
|
107 |
+
lora_alpha=32,
|
108 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
109 |
+
lora_dropout=0.05,
|
110 |
+
bias="none",
|
111 |
+
task_type="CAUSAL_LM"
|
112 |
+
)
|
113 |
+
|
114 |
+
self.model = get_peft_model(self.model, lora_config)
|
115 |
+
|
116 |
+
# Store model name for reference model
|
117 |
+
self.model_name = model_name
|
118 |
+
self.ref_model = None
|
119 |
+
|
120 |
+
def setup(self, stage=None):
|
121 |
+
# Move model to the correct device after initialization
|
122 |
+
if stage == "fit":
|
123 |
+
self.model = self.model.to(self.device)
|
124 |
+
|
125 |
+
def get_reference_model(self):
|
126 |
+
if self.ref_model is None:
|
127 |
+
# Load reference model with quantization
|
128 |
+
quantization_config = BitsAndBytesConfig(
|
129 |
+
load_in_4bit=True,
|
130 |
+
bnb_4bit_compute_dtype=torch.float16,
|
131 |
+
bnb_4bit_use_double_quant=True,
|
132 |
+
bnb_4bit_quant_type="nf4",
|
133 |
+
)
|
134 |
+
self.ref_model = AutoModelForCausalLM.from_pretrained(
|
135 |
+
self.model_name,
|
136 |
+
quantization_config=quantization_config,
|
137 |
+
device_map=None,
|
138 |
+
trust_remote_code=True,
|
139 |
+
)
|
140 |
+
self.ref_model.eval()
|
141 |
+
self.ref_model = self.ref_model.to(self.device)
|
142 |
+
return self.ref_model
|
143 |
+
|
144 |
+
def reward_function(self, completions):
|
145 |
+
rewards = []
|
146 |
+
for completion in completions:
|
147 |
+
# Reward based on length (normalized)
|
148 |
+
length_reward = len(completion.split()) / 100
|
149 |
+
|
150 |
+
# Reward based on diversity (unique words)
|
151 |
+
unique_words = len(set(completion.lower().split()))
|
152 |
+
diversity_reward = unique_words / len(completion.split())
|
153 |
+
|
154 |
+
# Combined reward
|
155 |
+
reward = 0.7 * length_reward + 0.3 * diversity_reward
|
156 |
+
rewards.append(reward)
|
157 |
+
|
158 |
+
return torch.tensor(rewards, device=self.device)
|
159 |
+
|
160 |
+
def forward(self, input_ids, attention_mask):
|
161 |
+
outputs = self.model(
|
162 |
+
input_ids=input_ids,
|
163 |
+
attention_mask=attention_mask,
|
164 |
+
return_dict=True
|
165 |
+
)
|
166 |
+
return outputs.logits
|
167 |
+
|
168 |
+
def training_step(self, batch, batch_idx):
|
169 |
+
# Generate completions
|
170 |
+
input_ids = batch["input_ids"]
|
171 |
+
attention_mask = batch["attention_mask"]
|
172 |
+
prompts = batch["prompt"]
|
173 |
+
|
174 |
+
# Generate multiple completions for each prompt
|
175 |
+
all_completions = []
|
176 |
+
for _ in range(self.hparams.num_generations):
|
177 |
+
outputs = self.model.generate(
|
178 |
+
input_ids=input_ids,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
max_new_tokens=128,
|
181 |
+
do_sample=True,
|
182 |
+
temperature=0.7,
|
183 |
+
top_p=0.9,
|
184 |
+
pad_token_id=self.tokenizer.eos_token_id
|
185 |
+
)
|
186 |
+
completions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
187 |
+
all_completions.extend(completions)
|
188 |
+
|
189 |
+
# Calculate rewards
|
190 |
+
rewards = self.reward_function(all_completions)
|
191 |
+
|
192 |
+
# Calculate KL divergence
|
193 |
+
ref_model = self.get_reference_model()
|
194 |
+
with torch.no_grad():
|
195 |
+
ref_outputs = ref_model(
|
196 |
+
input_ids=input_ids,
|
197 |
+
attention_mask=attention_mask,
|
198 |
+
return_dict=True
|
199 |
+
)
|
200 |
+
ref_logits = ref_outputs.logits
|
201 |
+
|
202 |
+
policy_logits = self(input_ids, attention_mask)
|
203 |
+
kl_div = torch.nn.functional.kl_div(
|
204 |
+
torch.nn.functional.log_softmax(policy_logits, dim=-1),
|
205 |
+
torch.nn.functional.softmax(ref_logits, dim=-1),
|
206 |
+
reduction='batchmean'
|
207 |
+
)
|
208 |
+
|
209 |
+
# Calculate GRPO loss
|
210 |
+
loss = -rewards.mean() + self.hparams.beta * kl_div
|
211 |
+
|
212 |
+
self.log("train_loss", loss)
|
213 |
+
self.log("train_reward", rewards.mean())
|
214 |
+
self.log("train_kl_div", kl_div)
|
215 |
+
|
216 |
+
return loss
|
217 |
+
|
218 |
+
def configure_optimizers(self):
|
219 |
+
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
|
220 |
+
scheduler = get_linear_schedule_with_warmup(
|
221 |
+
optimizer,
|
222 |
+
num_warmup_steps=self.hparams.warmup_steps,
|
223 |
+
num_training_steps=self.hparams.num_train_epochs * len(self.train_dataloader())
|
224 |
+
)
|
225 |
+
return {
|
226 |
+
"optimizer": optimizer,
|
227 |
+
"lr_scheduler": {
|
228 |
+
"scheduler": scheduler,
|
229 |
+
"monitor": "train_loss",
|
230 |
+
"frequency": 1
|
231 |
+
}
|
232 |
+
}
|
233 |
+
|
234 |
+
def on_train_end(self):
|
235 |
+
# Clean up reference model to free memory
|
236 |
+
if self.ref_model is not None:
|
237 |
+
del self.ref_model
|
238 |
+
self.ref_model = None
|
239 |
+
torch.cuda.empty_cache()
|
240 |
+
|
241 |
+
def train_dataloader(self):
|
242 |
+
if self.train_dataset is None:
|
243 |
+
raise ValueError("Train dataset not provided")
|
244 |
+
return DataLoader(
|
245 |
+
self.train_dataset,
|
246 |
+
batch_size=self.hparams.batch_size,
|
247 |
+
shuffle=True,
|
248 |
+
num_workers=4,
|
249 |
+
persistent_workers=True,
|
250 |
+
pin_memory=True
|
251 |
+
)
|
252 |
+
|
253 |
+
class TextDataModule(pl.LightningDataModule):
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
tokenizer,
|
257 |
+
max_length=256,
|
258 |
+
batch_size=4,
|
259 |
+
num_workers=4,
|
260 |
+
pin_memory=True,
|
261 |
+
):
|
262 |
+
super().__init__()
|
263 |
+
self.tokenizer = tokenizer
|
264 |
+
self.max_length = max_length
|
265 |
+
self.batch_size = batch_size
|
266 |
+
self.num_workers = num_workers
|
267 |
+
self.pin_memory = pin_memory
|
268 |
+
|
269 |
+
def main():
|
270 |
+
# Load dataset
|
271 |
+
dataset = load_dataset("tatsu-lab/alpaca")
|
272 |
+
train_dataset = dataset["train"].select(range(500))
|
273 |
+
|
274 |
+
# Initialize tokenizer with left padding
|
275 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
276 |
+
tokenizer.pad_token = tokenizer.eos_token
|
277 |
+
tokenizer.padding_side = 'left'
|
278 |
+
|
279 |
+
# Create dataset with reduced max length
|
280 |
+
train_dataset = TextDataset(train_dataset, tokenizer, max_length=128)
|
281 |
+
|
282 |
+
# Initialize model with optimized parameters for RTX 4060 Laptop
|
283 |
+
model = GRPOModel(
|
284 |
+
train_dataset=train_dataset,
|
285 |
+
batch_size=2,
|
286 |
+
num_generations=2,
|
287 |
+
max_length=128,
|
288 |
+
learning_rate=1e-5,
|
289 |
+
beta=0.02,
|
290 |
+
)
|
291 |
+
|
292 |
+
# Initialize logger and callbacks
|
293 |
+
wandb_logger = WandbLogger(project="llm-finetuning")
|
294 |
+
checkpoint_callback = ModelCheckpoint(
|
295 |
+
dirpath="./checkpoints",
|
296 |
+
filename="model-{epoch:02d}-{step:04d}",
|
297 |
+
monitor="train_loss",
|
298 |
+
mode="min",
|
299 |
+
save_top_k=3,
|
300 |
+
)
|
301 |
+
early_stopping = EarlyStopping(
|
302 |
+
monitor="train_loss",
|
303 |
+
patience=3,
|
304 |
+
mode="min",
|
305 |
+
)
|
306 |
+
|
307 |
+
# Training configuration
|
308 |
+
training_args = TrainingArguments(
|
309 |
+
output_dir="./fine-tuned-model",
|
310 |
+
num_train_epochs=3,
|
311 |
+
per_device_train_batch_size=2,
|
312 |
+
gradient_accumulation_steps=4,
|
313 |
+
learning_rate=1e-5,
|
314 |
+
weight_decay=0.01,
|
315 |
+
warmup_steps=50,
|
316 |
+
logging_steps=10,
|
317 |
+
save_strategy="epoch",
|
318 |
+
evaluation_strategy="no",
|
319 |
+
fp16=False,
|
320 |
+
gradient_checkpointing=True,
|
321 |
+
optim="adamw_torch",
|
322 |
+
lr_scheduler_type="cosine",
|
323 |
+
remove_unused_columns=False,
|
324 |
+
report_to="wandb",
|
325 |
+
dataloader_num_workers=4,
|
326 |
+
dataloader_pin_memory=True,
|
327 |
+
torch_compile=True,
|
328 |
+
max_grad_norm=1.0,
|
329 |
+
group_by_length=True,
|
330 |
+
)
|
331 |
+
|
332 |
+
# Initialize trainer with memory-optimized settings
|
333 |
+
trainer = pl.Trainer(
|
334 |
+
max_epochs=3,
|
335 |
+
accelerator="gpu",
|
336 |
+
devices=1,
|
337 |
+
precision="32",
|
338 |
+
gradient_clip_val=1.0,
|
339 |
+
accumulate_grad_batches=4,
|
340 |
+
log_every_n_steps=10,
|
341 |
+
val_check_interval=0.5,
|
342 |
+
callbacks=[
|
343 |
+
checkpoint_callback,
|
344 |
+
early_stopping,
|
345 |
+
],
|
346 |
+
strategy="auto",
|
347 |
+
)
|
348 |
+
|
349 |
+
# Train the model
|
350 |
+
console.print("[bold green]Starting training...[/bold green]")
|
351 |
+
console.print("[bold yellow]Training with optimized settings for RTX 4060 Laptop GPU[/bold yellow]")
|
352 |
+
console.print(f"Batch size: {model.hparams.batch_size}")
|
353 |
+
console.print(f"Generations per prompt: {model.hparams.num_generations}")
|
354 |
+
console.print(f"Max sequence length: {model.hparams.max_length}")
|
355 |
+
trainer.fit(model)
|
356 |
+
console.print("[bold green]Training completed![/bold green]")
|
357 |
+
|
358 |
+
# Save the model
|
359 |
+
model.model.save_pretrained("./fine-tuned-model")
|
360 |
+
model.tokenizer.save_pretrained("./fine-tuned-model")
|
361 |
+
console.print("[bold green]Model saved successfully![/bold green]")
|
362 |
+
|
363 |
+
# Test the model
|
364 |
+
test_prompt = "What is machine learning?"
|
365 |
+
console.print("\n[bold blue]Testing the model:[/bold blue]")
|
366 |
+
console.print(f"Original prompt: {test_prompt}")
|
367 |
+
|
368 |
+
inputs = model.tokenizer(test_prompt, return_tensors="pt").to(model.device)
|
369 |
+
outputs = model.model.generate(
|
370 |
+
**inputs,
|
371 |
+
max_new_tokens=128,
|
372 |
+
do_sample=True,
|
373 |
+
temperature=0.7,
|
374 |
+
top_p=0.9,
|
375 |
+
)
|
376 |
+
response = model.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
377 |
+
console.print(f"Generated response: {response}")
|
378 |
+
|
379 |
+
if __name__ == "__main__":
|
380 |
+
main()
|