Spaces:
Running
Running
File size: 12,224 Bytes
a8d6aab d2058e8 a8d6aab d2058e8 a8d6aab d2058e8 2e9b2d7 a8d6aab e9026bb 2e9b2d7 e9026bb a8d6aab e9026bb a8d6aab e9026bb a8d6aab e9026bb a8d6aab e9026bb 908f93a 2e73311 a8d6aab 908f93a a8d6aab e9026bb 908f93a a8d6aab 908f93a 2e73311 908f93a a8d6aab fd6b90a e9026bb fd6b90a e9026bb fd6b90a e9026bb fd6b90a e9026bb fd6b90a e9026bb a8d6aab 2e73311 a8d6aab 2e73311 a8d6aab e9026bb a8d6aab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from rich.console import Console
import time
# Initialize rich console for better logging
console = Console()
# Load the model and tokenizer with the same configuration as training
console.print("[bold green]Loading model and tokenizer...[/bold green]")
# Load model with memory optimizations
model = AutoModelForCausalLM.from_pretrained(
"./fine-tuned-model",
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16, # Use float16 for memory efficiency
low_cpu_mem_usage=True, # Add this for better memory handling
)
tokenizer = AutoTokenizer.from_pretrained("./fine-tuned-model")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load base model for before/after comparison
console.print("[bold green]Loading base model for comparison...[/bold green]")
base_model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2",
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True, # Add this for better memory handling
)
def generate_response(
prompt,
max_length=128, # Match training max_length
temperature=0.7,
top_p=0.9,
num_generations=2, # Match training num_generations
repetition_penalty=1.1,
do_sample=True,
show_comparison=True, # New parameter for comparison toggle
):
try:
# Get the device of the model
device = next(model.parameters()).device
# Tokenize the input
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
# Move inputs to the same device as the model
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate response from fine-tuned model
with torch.no_grad(): # Disable gradient computation
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
num_return_sequences=num_generations,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# Decode and return the responses
responses = []
for output in outputs:
response = tokenizer.decode(output, skip_special_tokens=True)
responses.append(response)
fine_tuned_response = "\n\n---\n\n".join(responses)
if show_comparison:
# Generate response from base model
with torch.no_grad():
base_outputs = base_model.generate(
**inputs,
max_new_tokens=max_length,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
num_return_sequences=1, # Only one for comparison
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
base_response = tokenizer.decode(base_outputs[0], skip_special_tokens=True)
return f"""
### Before Fine-tuning (Base Model)
{base_response}
### After Fine-tuning
{fine_tuned_response}
"""
else:
return fine_tuned_response
except Exception as e:
console.print(f"[bold red]Error during generation: {str(e)}[/bold red]")
return f"Error: {str(e)}"
# Create custom CSS for better UI
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.container {
max-width: 800px;
margin: auto;
padding: 20px;
}
.title {
text-align: center;
color: #2c3e50;
margin-bottom: 20px;
}
.description {
color: #34495e;
line-height: 1.6;
margin-bottom: 20px;
}
.comparison {
background-color: #f8f9fa;
padding: 15px;
border-radius: 8px;
margin: 10px 0;
}
.prompt-box {
background-color: #ffffff;
border: 2px solid #3498db;
border-radius: 8px;
padding: 15px;
margin-bottom: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.prompt-box label {
font-size: 1.1em;
font-weight: bold;
color: #2c3e50;
margin-bottom: 10px;
display: block;
}
.prompt-box textarea {
width: 100%;
min-height: 100px;
padding: 10px;
border: 1px solid #bdc3c7;
border-radius: 4px;
font-size: 1em;
line-height: 1.5;
}
.output-box {
background-color: #ffffff;
border: 2px solid #2ecc71;
border-radius: 8px;
padding: 20px;
margin-top: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.output-box label {
font-size: 1.1em;
font-weight: bold;
color: #2c3e50;
margin-bottom: 15px;
display: block;
}
.output-box .markdown {
background-color: #f8f9fa;
padding: 15px;
border-radius: 6px;
border: 1px solid #e9ecef;
}
.output-box h3 {
color: #2c3e50;
border-bottom: 2px solid #3498db;
padding-bottom: 8px;
margin-top: 20px;
}
.output-box p {
line-height: 1.6;
color: #34495e;
margin: 10px 0;
}
.loading {
display: flex;
align-items: center;
justify-content: center;
padding: 20px;
background-color: #f8f9fa;
border-radius: 8px;
margin: 10px 0;
}
.loading-spinner {
width: 40px;
height: 40px;
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
animation: spin 1s linear infinite;
margin-right: 15px;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.loading-text {
color: #2c3e50;
font-size: 1.1em;
font-weight: 500;
}
"""
# Create the Gradio interface with enhanced UI
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Phi-2 Fine-tuned with GRPO and qLoRA
This model has been fine-tuned using GRPO (Generative Reward-Penalized Optimization) and compressed using qLoRA.
Try it out with different prompts and generation parameters!
""",
elem_classes="title"
)
with gr.Row():
with gr.Column(scale=2):
with gr.Column(elem_classes="prompt-box"):
prompt = gr.Textbox(
label="Enter Your Prompt Here",
placeholder="Type your prompt here... (e.g., 'What is machine learning?' or 'Write a story about a robot learning to paint')",
lines=5,
show_label=True,
)
with gr.Row():
with gr.Column():
max_length = gr.Slider(
minimum=32,
maximum=256,
value=128,
step=32,
label="Max Length",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher values make output more random, lower values more deterministic"
)
with gr.Column():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top-p",
info="Nucleus sampling parameter"
)
num_generations = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Number of Generations",
info="Number of different responses to generate"
)
with gr.Row():
with gr.Column():
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Higher values prevent repetition"
)
with gr.Column():
do_sample = gr.Checkbox(
value=True,
label="Enable Sampling",
info="Enable/disable sampling for deterministic output"
)
show_comparison = gr.Checkbox(
value=True,
label="Show Before/After Comparison",
info="Toggle to show responses from both base and fine-tuned models"
)
generate_btn = gr.Button("Generate", variant="primary", size="large")
with gr.Column(scale=3):
with gr.Column(elem_classes="output-box"):
output = gr.Markdown(
label="Generated Response(s)",
show_label=True,
value="Your generated responses will appear here...", # Add default value
)
loading_status = gr.Markdown(
value="",
show_label=False,
elem_classes="loading"
)
gr.Markdown(
"""
### Example Prompts
Try these example prompts to test the model:
1. **Technical Questions**:
- "What is machine learning?"
- "What is deep learning?"
- "What is the difference between supervised and unsupervised learning?"
2. **Creative Writing**:
- "Write a short story about a robot learning to paint."
- "Write a story about a time-traveling smartphone."
- "Write a fairy tale about a computer learning to dream."
- "Create a story about an AI becoming an artist."
3. **Technical Explanations**:
- "How does neural network training work?"
- "Explain quantum computing in simple terms."
- "What is transfer learning?"
4. **Creative Tasks**:
- "Write a poem about artificial intelligence."
- "Write a poem about the future of technology."
- "Create a story about a robot learning to dream."
""",
elem_classes="description"
)
def generate_with_status(*args):
# Show loading status
loading_status.value = """
<div class="loading">
<div class="loading-spinner"></div>
<div class="loading-text">Generating responses... Please wait...</div>
</div>
"""
# Generate response
result = generate_response(*args)
# Clear loading status
loading_status.value = ""
return result
# Connect the interface
generate_btn.click(
fn=generate_with_status,
inputs=[
prompt,
max_length,
temperature,
top_p,
num_generations,
repetition_penalty,
do_sample,
show_comparison
],
outputs=output
)
if __name__ == "__main__":
console.print("[bold green]Starting Gradio interface...[/bold green]")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True # Enable sharing for HuggingFace Spaces
) |