Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL | |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) | |
torch.cuda.empty_cache() | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
# prompt=prompt, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# width=width, | |
# height=height, | |
# generator=generator, | |
# output_type="pil", | |
# good_vae=good_vae, | |
# ): | |
# yield img, seed | |
# Handle LoRA loading | |
# Load LoRA weights and prepare joint_attention_kwargs | |
if lora_id and lora_id.strip() != "": | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(lora_id.strip()) | |
joint_attention_kwargs = {"scale": lora_scale} | |
else: | |
joint_attention_kwargs = None | |
try: | |
# Call the custom pipeline function with the correct keyword argument | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
output_type="pil", | |
good_vae=good_vae, # Assuming good_vae is defined elsewhere | |
joint_attention_kwargs=joint_attention_kwargs, # Fixed parameter name | |
): | |
yield img, seed | |
finally: | |
# Unload LoRA weights if they were loaded | |
if lora_id: | |
pipe.unload_lora_weights() | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
.generate-btn { | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
border: none !important; | |
color: white !important; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
} | |
""" | |
with gr.Blocks(css=css) as app: | |
gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>") | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input") | |
with gr.Row(): | |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0, | |
maximum=2, | |
step=0.01, | |
value=0.95, | |
) | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=2048, step=8) | |
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=2048, step=8) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5) | |
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
with gr.Row(): | |
# text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"]) | |
with gr.Column(): | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") | |
# gr.Markdown(article_text) | |
with gr.Column(): | |
gr.Examples( | |
examples = examples, | |
inputs = [text_prompt], | |
) | |
gr.on( | |
triggers=[text_button.click, text_prompt.submit], | |
fn = infer, | |
inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], | |
outputs=[image_output, seed] | |
) | |
# text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed]) | |
# text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed]) | |
app.launch(share=True) | |