File size: 6,296 Bytes
e547b24
021dd02
e547b24
021dd02
 
 
 
 
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
e547b24
021dd02
 
 
 
 
40d7442
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
 
 
7c99485
021dd02
7c99485
021dd02
 
 
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
 
bf0e257
021dd02
 
 
 
753f6ea
b45a3eb
 
 
 
 
 
7c99485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237ef3
7c99485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68880c3
 
7c99485
 
 
 
 
 
 
 
 
 
 
 
 
2ef175c
7c99485
 
 
 
 
 
 
 
 
 
bf0e257
7c99485
2ef175c
7c99485
 
2ef175c
7c99485
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    
    # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
    #         prompt=prompt,
    #         guidance_scale=guidance_scale,
    #         num_inference_steps=num_inference_steps,
    #         width=width,
    #         height=height,
    #         generator=generator,
    #         output_type="pil",
    #         good_vae=good_vae,
    #     ):
    #         yield img, seed

    # Handle LoRA loading
    # Load LoRA weights and prepare joint_attention_kwargs
    if lora_id and lora_id.strip() != "":
        pipe.unload_lora_weights()
        pipe.load_lora_weights(lora_id.strip())
        joint_attention_kwargs = {"scale": lora_scale}
    else:
        joint_attention_kwargs = None
    
    try:
        # Call the custom pipeline function with the correct keyword argument
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,  # Assuming good_vae is defined elsewhere
            joint_attention_kwargs=joint_attention_kwargs,  # Fixed parameter name
        ):
            yield img, seed
    finally:
        # Unload LoRA weights if they were loaded
        if lora_id:
            pipe.unload_lora_weights()
    
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]
    
css = """
#col-container {
   margin: 0 auto;
   max-width: 960px;
}
.generate-btn {
   background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
   border: none !important;
   color: white !important;
}
.generate-btn:hover {
   transform: translateY(-2px);
   box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
"""

with gr.Blocks(css=css) as app:
    gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
                with gr.Row():
                    custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        lora_scale = gr.Slider(
                            label="LoRA Scale",
                            minimum=0,
                            maximum=2,
                            step=0.01,
                            value=0.95,
                        )
                        with gr.Row():
                            width = gr.Slider(label="Width", value=1024, minimum=64, maximum=2048, step=8)
                            height = gr.Slider(label="Height", value=1024, minimum=64, maximum=2048, step=8)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                        with gr.Row():
                            steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
                            cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                        # method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])

                with gr.Row():
                    # text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
                    text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])
            with gr.Column():
                with gr.Row():
                    image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
        # gr.Markdown(article_text)
        with gr.Column():
            gr.Examples(
                examples = examples,
                inputs = [text_prompt],
            )
    gr.on(
        triggers=[text_button.click, text_prompt.submit],
        fn = infer,
        inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], 
        outputs=[image_output, seed]
    )
        
        # text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
        # text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])

app.launch(share=True)