oreillyp's picture
flagging
ee4a788
import os
import sys
import uuid
from pathlib import Path
from contextlib import contextmanager
import numpy as np
import torch
import matplotlib.pyplot as plt
import gradio as gr
from scipy.io.wavfile import write as wavwrite
from audiotools import AudioSignal
from audioseal import AudioSeal
# allow local imports of your encodec folder
@contextmanager
def chdir(path: str):
origin = Path().absolute()
try:
os.chdir(path)
yield
finally:
os.chdir(origin)
_path = Path(__file__).parent
sys.path.insert(0, str(_path))
with chdir(_path):
from encodec import Encodec
OUT_DIR = _path / "gradio-outputs"
OUT_DIR.mkdir(exist_ok=True)
LOUDNESS_DB = -16.
SAMPLE_RATE = 48_000
ENCODEC_SAMPLE_RATE = 16_000
AUDIOSEAL_SAMPLE_RATE = 16_000
# load codec
config = {
"sample_rate": 16_000,
"target_bandwidths": [2.2],
"channels": 1,
"causal": False,
"codebook_size": 2048,
"n_filters": 64,
"model_norm": "weight_norm",
"audio_normalize": False,
"true_skip": True,
"ratios": [8, 5, 4, 2],
"encoder_kwargs": {"pad_mode": "constant"},
"decoder_kwargs": {"pad_mode": "constant"},
}
codec = Encodec(**config)
codec.load_state_dict(torch.load("ckpt/encodec_voicecraft.pt", map_location="cpu"))
codec.eval()
for p in codec.parameters(): p.requires_grad_(False)
codec.set_target_bandwidth(2.2)
# watermark models
embedder = AudioSeal.load_generator("audioseal_wm_16bits")
detector = AudioSeal.load_detector("audioseal_detector_16bits")
@torch.no_grad()
def encode(signal: AudioSignal, codec: torch.nn.Module):
n_b, n_ch, n_s = signal.shape
sr = signal.sample_rate
loud_db = signal.loudness()
x = signal.clone().resample(ENCODEC_SAMPLE_RATE).audio_data
x = x.reshape(n_b * n_ch, 1, -1)
codes, *_ = codec.encode(x)
return codes, n_b, n_ch, n_s, sr, loud_db
@torch.no_grad()
def decode(codes, n_b, n_ch, n_s, sr, loud_db, codec):
x = codec.decode(codes).reshape(n_b, n_ch, -1)
sig = AudioSignal(x, sample_rate=ENCODEC_SAMPLE_RATE)
sig = sig.resample(sr)
sig.audio_data = sig.audio_data[..., :n_s]
sig.audio_data = torch.nn.functional.pad(
sig.audio_data, (0, max(0, n_s - sig.signal_length))
)
return sig.normalize(loud_db)
@torch.no_grad()
def split_bands(signal: AudioSignal, sample_rate: float = ENCODEC_SAMPLE_RATE):
nyq = sample_rate // 2
high = signal.clone().high_pass(cutoffs=int(nyq * 0.95), zeros=51)
low = signal.clone().low_pass(cutoffs=int(nyq * 1.05), zeros=51)
loud_db = low.loudness()
low = low.resample(sample_rate)
return low, high, loud_db
@torch.no_grad()
def merge_bands(low, high, loud_db):
low = low.clone().to(high.device).resample(high.sample_rate)
low.audio_data = low.audio_data[..., :high.signal_length]
low.audio_data = torch.nn.functional.pad(
low.audio_data, (0, max(0, high.signal_length - low.signal_length))
)
return low.normalize(loud_db) + high
@torch.no_grad()
def attack(signal: AudioSignal, codec, split_rate_hz=AUDIOSEAL_SAMPLE_RATE):
if split_rate_hz:
low, high, loud_db = split_bands(signal, split_rate_hz)
low = decode(*encode(low, codec), codec)
return merge_bands(low, high, loud_db)
else:
return decode(*encode(signal, codec), codec)
@torch.no_grad()
def embed(signal: AudioSignal, embedder: torch.nn.Module):
orig_ch, orig_sr = signal.num_channels, signal.sample_rate
sig = signal.clone().resample(SAMPLE_RATE)
if orig_ch > 1:
b, c, n = sig.audio_data.shape
sig.audio_data = sig.audio_data.reshape(b * c, 1, n)
low, high, loud = split_bands(sig.clone(), AUDIOSEAL_SAMPLE_RATE)
wm = embedder.get_watermark(low.audio_data, AUDIOSEAL_SAMPLE_RATE)
low.audio_data = low.audio_data + wm
merged = merge_bands(low, high, loud)
if orig_ch > 1:
b2, c2, n2 = merged.audio_data.shape
merged.audio_data = merged.audio_data.reshape(-1, orig_ch * c2, n2)
return merged.resample(orig_sr)
@torch.no_grad()
def detect(signal: AudioSignal, detector: torch.nn.Module):
sig = signal.clone().to_mono().resample(AUDIOSEAL_SAMPLE_RATE)
result, _ = detector.forward(sig.audio_data, sample_rate=AUDIOSEAL_SAMPLE_RATE)
return result[0, 1, :].detach().cpu().numpy()
def pipeline(audio_tuple):
sr, audio_np = audio_tuple
print("GOT SR", sr)
print("GOT AUDIO", audio_np.shape)
if audio_np.ndim == 1:
audio_np = audio_np[None, None, :]
else:
audio_np = np.transpose(audio_np, (1, 0))[None, ...]
print("FORMATTED AUDIO", audio_np.shape)
sig = AudioSignal(torch.from_numpy(audio_np).float(), sample_rate=sr)
orig_loud = sig.loudness()
sig = sig.to_mono().resample(SAMPLE_RATE).normalize(LOUDNESS_DB).ensure_max_of_audio()
print("REFORMATTED AUDIO")
print(sig)
# Detect
scores = detect(sig, detector)
# Embed + detect without attack
wm_sig = embed(sig.clone(), embedder).normalize(LOUDNESS_DB).ensure_max_of_audio()
scores_clean = detect(wm_sig, detector)
print(np.mean(scores_clean))
# Attack + detect
att_sig = attack(wm_sig.clone(), codec).normalize(LOUDNESS_DB).ensure_max_of_audio()
scores_att = detect(att_sig, detector)
print(np.mean(scores_att))
# Match loudness priot to writing
wm_sig.normalize(orig_loud).ensure_max_of_audio()
att_sig.normalize(orig_loud).ensure_max_of_audio()
# Write audio files to disk
uid = uuid.uuid4().hex
wm_path = OUT_DIR / f"watermarked_{uid}.wav"
att_path = OUT_DIR / f"attacked_{uid}.wav"
wm_arr = wm_sig.audio_data.squeeze().numpy()
att_arr = att_sig.audio_data.squeeze().numpy()
wavwrite(str(wm_path), SAMPLE_RATE, wm_arr)
wavwrite(str(att_path), SAMPLE_RATE, att_arr)
# Plot scores with waveform background
# Plot: waveform on top, detection scores on bottom
sig_bg = sig.clone().to_mono().resample(AUDIOSEAL_SAMPLE_RATE)
wav = sig_bg.audio_data.squeeze().numpy()
N = len(scores)
if wav.shape[0] < N:
wav = np.pad(wav, (0, N - wav.shape[0]), mode="constant")
else:
wav = wav[:N]
fig, (ax_wav, ax_score) = plt.subplots(2, 1, sharex=True, figsize=(8, 6))
# Top: waveform (no labels)
ax_wav.plot(wav, alpha=0.3)
ax_wav.axis("off")
# Bottom: detection scores
ax_score.plot(scores, label="No watermark", color="blue")
ax_score.plot(scores_clean, label="Watermark (no attack)", color="green")
ax_score.plot(scores_att, label="Watermark (codec attack)", color="red")
ax_score.set_xlabel("Frame Index")
ax_score.set_ylabel("Detection Score")
ax_score.set_ylim(-0.05, 1.05)
ax_score.set_yticks([0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
ax_score.legend()
plt.tight_layout()
plot_path = OUT_DIR / f"detection_plot_{uid}.png"
fig.savefig(str(plot_path), format="png")
plt.close(fig)
return str(wm_path), str(att_path), str(plot_path)
demo = gr.Interface(
fn=pipeline,
inputs= gr.Audio(sources=["upload"], type="numpy", label="Upload Input Audio"),
outputs=[
gr.Audio(type="filepath", label="Watermarked Audio"),
gr.Audio(type="filepath", label="Attacked Audio"),
gr.Image(type="filepath", label="Detection Scores Plot"),
],
title="Watermark Stress Test",
description="""
This is an educational demonstration of state-of-the-art audio watermark performance under codec processing. Upload any (speech) audio file to test watermark performance before and after processing with a low-bitrate neural codec [1].
For this demo, we use the AudioSeal [2] watermark, which is well documented, open source, and provides state-of-the-art localized detection performance. Both the watermark and codec operate at 16kHz, meaning all frequencies above 8kHz are left unaltered. To ensure consistent watermark performance, we normalize audio to -16db LUFS and downmix to mono prior to embedding.
[1] https://github.com/jasonppy/VoiceCraft
[2] https://github.com/facebookresearch/audioseal
""",
article="""
The citation info for our corresponding paper is:
```
@inproceedings{deepwatermarksareshallow,
author ={Patrick O'Reilly and Zeyu Jin and Jiaqi Su and Bryan Pardo},
title = {Deep Audio Watermarks are Shallow: Limitations of Post-Hoc Watermarking Techniques for Speech},
booktitle = {ICLR Workshop on GenAI Watermarking},
year = {2025}
}
```
For the VoiceCraft codec:
```
@article{voicecraft,
author={Puyuan Peng and Po-Yao Huang and Daniel Li and Abdelrahman Mohamed and David Harwath},
year={2024},
title={VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild},
journal={arXiv preprint arXiv:2403.16973v1},
}
```
And for the AudioSeal watermark:
```
@article{audioseal,
title={Proactive Detection of Voice Cloning with Localized Watermarking},
author={San Roman, Robin and Fernandez, Pierre and Elsahar, Hady and D´efossez, Alexandre and Furon, Teddy and Tran, Tuan},
journal={International Conference on Machine Learning (ICML)},
year={2024}
}
```
""",
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch(share=True)