Spaces:
Sleeping
Sleeping
File size: 9,370 Bytes
f872c8a ee4a788 f872c8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import sys
import uuid
from pathlib import Path
from contextlib import contextmanager
import numpy as np
import torch
import matplotlib.pyplot as plt
import gradio as gr
from scipy.io.wavfile import write as wavwrite
from audiotools import AudioSignal
from audioseal import AudioSeal
# allow local imports of your encodec folder
@contextmanager
def chdir(path: str):
origin = Path().absolute()
try:
os.chdir(path)
yield
finally:
os.chdir(origin)
_path = Path(__file__).parent
sys.path.insert(0, str(_path))
with chdir(_path):
from encodec import Encodec
OUT_DIR = _path / "gradio-outputs"
OUT_DIR.mkdir(exist_ok=True)
LOUDNESS_DB = -16.
SAMPLE_RATE = 48_000
ENCODEC_SAMPLE_RATE = 16_000
AUDIOSEAL_SAMPLE_RATE = 16_000
# load codec
config = {
"sample_rate": 16_000,
"target_bandwidths": [2.2],
"channels": 1,
"causal": False,
"codebook_size": 2048,
"n_filters": 64,
"model_norm": "weight_norm",
"audio_normalize": False,
"true_skip": True,
"ratios": [8, 5, 4, 2],
"encoder_kwargs": {"pad_mode": "constant"},
"decoder_kwargs": {"pad_mode": "constant"},
}
codec = Encodec(**config)
codec.load_state_dict(torch.load("ckpt/encodec_voicecraft.pt", map_location="cpu"))
codec.eval()
for p in codec.parameters(): p.requires_grad_(False)
codec.set_target_bandwidth(2.2)
# watermark models
embedder = AudioSeal.load_generator("audioseal_wm_16bits")
detector = AudioSeal.load_detector("audioseal_detector_16bits")
@torch.no_grad()
def encode(signal: AudioSignal, codec: torch.nn.Module):
n_b, n_ch, n_s = signal.shape
sr = signal.sample_rate
loud_db = signal.loudness()
x = signal.clone().resample(ENCODEC_SAMPLE_RATE).audio_data
x = x.reshape(n_b * n_ch, 1, -1)
codes, *_ = codec.encode(x)
return codes, n_b, n_ch, n_s, sr, loud_db
@torch.no_grad()
def decode(codes, n_b, n_ch, n_s, sr, loud_db, codec):
x = codec.decode(codes).reshape(n_b, n_ch, -1)
sig = AudioSignal(x, sample_rate=ENCODEC_SAMPLE_RATE)
sig = sig.resample(sr)
sig.audio_data = sig.audio_data[..., :n_s]
sig.audio_data = torch.nn.functional.pad(
sig.audio_data, (0, max(0, n_s - sig.signal_length))
)
return sig.normalize(loud_db)
@torch.no_grad()
def split_bands(signal: AudioSignal, sample_rate: float = ENCODEC_SAMPLE_RATE):
nyq = sample_rate // 2
high = signal.clone().high_pass(cutoffs=int(nyq * 0.95), zeros=51)
low = signal.clone().low_pass(cutoffs=int(nyq * 1.05), zeros=51)
loud_db = low.loudness()
low = low.resample(sample_rate)
return low, high, loud_db
@torch.no_grad()
def merge_bands(low, high, loud_db):
low = low.clone().to(high.device).resample(high.sample_rate)
low.audio_data = low.audio_data[..., :high.signal_length]
low.audio_data = torch.nn.functional.pad(
low.audio_data, (0, max(0, high.signal_length - low.signal_length))
)
return low.normalize(loud_db) + high
@torch.no_grad()
def attack(signal: AudioSignal, codec, split_rate_hz=AUDIOSEAL_SAMPLE_RATE):
if split_rate_hz:
low, high, loud_db = split_bands(signal, split_rate_hz)
low = decode(*encode(low, codec), codec)
return merge_bands(low, high, loud_db)
else:
return decode(*encode(signal, codec), codec)
@torch.no_grad()
def embed(signal: AudioSignal, embedder: torch.nn.Module):
orig_ch, orig_sr = signal.num_channels, signal.sample_rate
sig = signal.clone().resample(SAMPLE_RATE)
if orig_ch > 1:
b, c, n = sig.audio_data.shape
sig.audio_data = sig.audio_data.reshape(b * c, 1, n)
low, high, loud = split_bands(sig.clone(), AUDIOSEAL_SAMPLE_RATE)
wm = embedder.get_watermark(low.audio_data, AUDIOSEAL_SAMPLE_RATE)
low.audio_data = low.audio_data + wm
merged = merge_bands(low, high, loud)
if orig_ch > 1:
b2, c2, n2 = merged.audio_data.shape
merged.audio_data = merged.audio_data.reshape(-1, orig_ch * c2, n2)
return merged.resample(orig_sr)
@torch.no_grad()
def detect(signal: AudioSignal, detector: torch.nn.Module):
sig = signal.clone().to_mono().resample(AUDIOSEAL_SAMPLE_RATE)
result, _ = detector.forward(sig.audio_data, sample_rate=AUDIOSEAL_SAMPLE_RATE)
return result[0, 1, :].detach().cpu().numpy()
def pipeline(audio_tuple):
sr, audio_np = audio_tuple
print("GOT SR", sr)
print("GOT AUDIO", audio_np.shape)
if audio_np.ndim == 1:
audio_np = audio_np[None, None, :]
else:
audio_np = np.transpose(audio_np, (1, 0))[None, ...]
print("FORMATTED AUDIO", audio_np.shape)
sig = AudioSignal(torch.from_numpy(audio_np).float(), sample_rate=sr)
orig_loud = sig.loudness()
sig = sig.to_mono().resample(SAMPLE_RATE).normalize(LOUDNESS_DB).ensure_max_of_audio()
print("REFORMATTED AUDIO")
print(sig)
# Detect
scores = detect(sig, detector)
# Embed + detect without attack
wm_sig = embed(sig.clone(), embedder).normalize(LOUDNESS_DB).ensure_max_of_audio()
scores_clean = detect(wm_sig, detector)
print(np.mean(scores_clean))
# Attack + detect
att_sig = attack(wm_sig.clone(), codec).normalize(LOUDNESS_DB).ensure_max_of_audio()
scores_att = detect(att_sig, detector)
print(np.mean(scores_att))
# Match loudness priot to writing
wm_sig.normalize(orig_loud).ensure_max_of_audio()
att_sig.normalize(orig_loud).ensure_max_of_audio()
# Write audio files to disk
uid = uuid.uuid4().hex
wm_path = OUT_DIR / f"watermarked_{uid}.wav"
att_path = OUT_DIR / f"attacked_{uid}.wav"
wm_arr = wm_sig.audio_data.squeeze().numpy()
att_arr = att_sig.audio_data.squeeze().numpy()
wavwrite(str(wm_path), SAMPLE_RATE, wm_arr)
wavwrite(str(att_path), SAMPLE_RATE, att_arr)
# Plot scores with waveform background
# Plot: waveform on top, detection scores on bottom
sig_bg = sig.clone().to_mono().resample(AUDIOSEAL_SAMPLE_RATE)
wav = sig_bg.audio_data.squeeze().numpy()
N = len(scores)
if wav.shape[0] < N:
wav = np.pad(wav, (0, N - wav.shape[0]), mode="constant")
else:
wav = wav[:N]
fig, (ax_wav, ax_score) = plt.subplots(2, 1, sharex=True, figsize=(8, 6))
# Top: waveform (no labels)
ax_wav.plot(wav, alpha=0.3)
ax_wav.axis("off")
# Bottom: detection scores
ax_score.plot(scores, label="No watermark", color="blue")
ax_score.plot(scores_clean, label="Watermark (no attack)", color="green")
ax_score.plot(scores_att, label="Watermark (codec attack)", color="red")
ax_score.set_xlabel("Frame Index")
ax_score.set_ylabel("Detection Score")
ax_score.set_ylim(-0.05, 1.05)
ax_score.set_yticks([0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
ax_score.legend()
plt.tight_layout()
plot_path = OUT_DIR / f"detection_plot_{uid}.png"
fig.savefig(str(plot_path), format="png")
plt.close(fig)
return str(wm_path), str(att_path), str(plot_path)
demo = gr.Interface(
fn=pipeline,
inputs= gr.Audio(sources=["upload"], type="numpy", label="Upload Input Audio"),
outputs=[
gr.Audio(type="filepath", label="Watermarked Audio"),
gr.Audio(type="filepath", label="Attacked Audio"),
gr.Image(type="filepath", label="Detection Scores Plot"),
],
title="Watermark Stress Test",
description="""
This is an educational demonstration of state-of-the-art audio watermark performance under codec processing. Upload any (speech) audio file to test watermark performance before and after processing with a low-bitrate neural codec [1].
For this demo, we use the AudioSeal [2] watermark, which is well documented, open source, and provides state-of-the-art localized detection performance. Both the watermark and codec operate at 16kHz, meaning all frequencies above 8kHz are left unaltered. To ensure consistent watermark performance, we normalize audio to -16db LUFS and downmix to mono prior to embedding.
[1] https://github.com/jasonppy/VoiceCraft
[2] https://github.com/facebookresearch/audioseal
""",
article="""
The citation info for our corresponding paper is:
```
@inproceedings{deepwatermarksareshallow,
author ={Patrick O'Reilly and Zeyu Jin and Jiaqi Su and Bryan Pardo},
title = {Deep Audio Watermarks are Shallow: Limitations of Post-Hoc Watermarking Techniques for Speech},
booktitle = {ICLR Workshop on GenAI Watermarking},
year = {2025}
}
```
For the VoiceCraft codec:
```
@article{voicecraft,
author={Puyuan Peng and Po-Yao Huang and Daniel Li and Abdelrahman Mohamed and David Harwath},
year={2024},
title={VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild},
journal={arXiv preprint arXiv:2403.16973v1},
}
```
And for the AudioSeal watermark:
```
@article{audioseal,
title={Proactive Detection of Voice Cloning with Localized Watermarking},
author={San Roman, Robin and Fernandez, Pierre and Elsahar, Hady and D´efossez, Alexandre and Furon, Teddy and Tran, Tuan},
journal={International Conference on Machine Learning (ICML)},
year={2024}
}
```
""",
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch(share=True)
|