Spaces:
Sleeping
Sleeping
import os | |
import random | |
from tqdm import tqdm | |
import multiprocessing | |
from utils.utils import save_dataset | |
import numpy as np | |
import torch | |
from scipy.spatial.distance import cdist | |
from utils.utils import load_dataset | |
from utils.data_utils.dataset_base import DatasetBase, DataLoaderBase | |
from models.solvers.general_solver import GeneralSolver | |
from models.classifiers.ground_truth.ground_truth_base import get_tw_mask, get_visited_mask | |
from models.classifiers.ground_truth.ground_truth_tsptw import GroundTruthTSPTW | |
class TSPTWDataset(DatasetBase): | |
def __init__(self, coord_dim, num_samples, num_nodes, solver="ortools", classifier="ortools", annotation=True, parallel=True, random_seed=1234, num_cpus=os.cpu_count(), | |
grid_size=100, is_integer_instance=False, distribution="da_silva", max_tw_gap=10): | |
""" | |
Parameters | |
---------- | |
num_samples: int | |
number of samples(instances) | |
num_nodes: int | |
number of nodes | |
grid_size: int or float32 | |
x-pos/y-pos of cities will be in the range [0, grid_size] | |
max_tw_gap: | |
maximum time windows gap allowed between the cities constituing the feasible tour | |
max_tw_size: | |
time windows of cities will be in the range [0, max_tw_size] | |
is_integer_instance: bool | |
True if we want the distances and time widows to have integer values | |
seed: int | |
seed used for generating the instance. -1 means no seed (instance is random) | |
""" | |
super().__init__(coord_dim, num_samples, num_nodes, annotation, parallel, random_seed, num_cpus) | |
self.grid_size = grid_size | |
self.is_integer_instance = is_integer_instance | |
self.da_silva_style = distribution == "da_silva" | |
self.max_tw_size = 1000 if self.da_silva_style else 100 | |
self.max_tw_gap = max_tw_gap | |
solver_type = solver | |
classifier_type = classifier | |
self.tsptw_solver = GeneralSolver(problem="tsptw", solver_type=solver_type) | |
self.classifier = GroundTruthTSPTW(solver_type=classifier_type) | |
def generate_instance(self, seed): | |
""" | |
Parameters | |
---------- | |
seed: int | |
random seed | |
Returns | |
-------- | |
a feasible TSPTW instance randomly generated using the parameters | |
------- | |
""" | |
rand = random.Random() | |
if seed is not None: | |
rand.seed(seed) | |
np.random.seed(seed) | |
#----------------------------- | |
# generate locations of nodes | |
#----------------------------- | |
coords = np.random.uniform(size=(self.num_nodes, self.coord_dim)) | |
#------------------------------------------------------------------------------- | |
# compute travel time b/w two nodes, which is identical to distance b/w the two | |
#------------------------------------------------------------------------------- | |
travel_time = cdist(coords, coords) * self.grid_size # [num_nodes x num_nodes] | |
if self.is_integer_instance: | |
travel_time = travel_time.round().astype(np.int64) | |
#------------------------------------------------------------------ | |
# generate a random tour to guarantee existence of a fieasble tour | |
#------------------------------------------------------------------ | |
random_solution = list(range(1, self.num_nodes)) | |
rand.shuffle(random_solution) | |
random_solution = [0] + random_solution # add the depot (node_id=0) | |
#---------------------- | |
# generate time window | |
#---------------------- | |
time_windows = np.zeros((self.num_nodes, 2)) | |
time_windows[0, :] = [0, 100 * self.grid_size] # time window for the depot | |
total_dist = 0 | |
for i in range(1, self.num_nodes): | |
prev_node_id = random_solution[i-1] | |
cur_node_id = random_solution[i] | |
cur_dist = travel_time[prev_node_id][cur_node_id] | |
tw_lb_min = time_windows[prev_node_id, 0] + cur_dist | |
total_dist += cur_dist | |
if self.da_silva_style: | |
# Style by Da Silva and Urrutia, 2010, "A VNS Heuristic for TSPTW" | |
rand_tw_lb = rand.uniform(total_dist - self.max_tw_size / 2, total_dist) | |
rand_tw_ub = rand.uniform(total_dist, total_dist + self.max_tw_size / 2) | |
else: | |
# Cappart et al. style 'propagates' the time windows resulting in little overlap / easier instances | |
rand_tw_lb = rand.uniform(tw_lb_min, tw_lb_min + self.max_tw_gap) | |
rand_tw_ub = rand.uniform(rand_tw_lb, rand_tw_lb + self.max_tw_size) | |
if self.is_integer_instance: | |
rand_tw_lb = np.floor(rand_tw_lb) | |
rand_tw_ub = np.ceil(rand_tw_ub) | |
time_windows[cur_node_id, :] = [rand_tw_lb, rand_tw_ub] # [num_nodes x 2(start, end)] | |
if self.is_integer_instance: | |
time_windows = time_windows.astype(np.int64) | |
# Don't store travel time since it takes up much | |
return { | |
"coords": coords, | |
"time_window": time_windows / self.grid_size, | |
"grid_size": np.array([1.0]) | |
} | |
def annotate(self, instance): | |
""" | |
Paramters | |
--------- | |
instance: dict | |
coords: np.array [num_nodes x coord_dim] | |
time_window: np.array [num_nodes x 2(start, end)] | |
grid_size: int or float32 | |
Returns | |
------- | |
labeled instance: dict | |
coords: np.array [num_nodes x coord_dim] | |
time_window: np.array [num_nodes x 2(start, end)] | |
grid_size: int or float32 | |
tour: np.array [seq_length] | |
labels: 2d list [num_labeled_step x 2(step, label)] | |
""" | |
# solve TSPTW | |
num_nodes = len(instance["coords"]) | |
node_feats = instance | |
tsptw_tour = self.tsptw_solver.solve(node_feats) | |
if len(tsptw_tour[0]) != num_nodes + 1: | |
# print("Could not find a feasible tour! Skip current instance.") | |
return | |
# annotate each path | |
inputs = self.classifier.get_inputs(tsptw_tour, 0, node_feats) | |
labels = self.classifier(inputs, annotation=True) | |
if labels is None: | |
return | |
instance.update({"tour": tsptw_tour, "labels": labels}) | |
return instance | |
def get_tw_mask2(tour, step, node_feats): | |
""" | |
Nodes whose tw exceeds current_time -> infeasible, otherwise -> feasible. | |
Parameters | |
---------- | |
tour: list [seq_length] | |
step: int | |
node_feats: dict of np.array | |
Returns | |
------- | |
mask_tw: np.array [num_nodes] | |
""" | |
node_feats = node_feats.copy() | |
coords = node_feats["coords"] | |
time_window = node_feats["time_window"] | |
num_nodes = len(coords) | |
curr_time = 0.0 | |
not_exceed_tw = np.ones(num_nodes).astype(np.int32) | |
for i in range(1, step): | |
prev_id = tour[i - 1] | |
curr_id = tour[i] | |
travel_time = np.linalg.norm(coords[prev_id] - coords[curr_id]) | |
# assert curr_time + travel_time < time_window[curr_id, 1], f"Invalid tour! arrival_time: {curr_time + travel_time}, time_window: {time_window[curr_id]}" | |
if curr_time + travel_time < time_window[curr_id, 0]: | |
curr_time = time_window[curr_id, 0].copy() | |
else: | |
curr_time += travel_time | |
next_time = curr_time + np.linalg.norm(coords[tour[step-1]][None, :] - coords, axis=-1) # [num_nodes] TODO: check | |
not_exceed_tw[next_time > time_window[:, 1]] = 0 | |
not_exceed_tw = not_exceed_tw > 0 | |
return not_exceed_tw, curr_time | |
class TSPTWDataloader(DataLoaderBase): | |
# @override | |
def load_randomly(self, instance, fname=None): | |
data = [] | |
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim] | |
raw_time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) | |
time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) # [num_nodes x 2] | |
time_window = (time_window - time_window[1:].min()) / (time_window[1:].max() - time_window[1:].min()) # min-max normalization | |
node_feats = torch.cat((coords, time_window), -1) # [num_nodes x (coord_dim + 2)] | |
tours = instance["tour"] | |
labels = instance["labels"] | |
for vehicle_id in range(len(labels)): | |
for step, label in labels[vehicle_id]: | |
visited = get_visited_mask(tours[vehicle_id], step, instance) | |
not_exceed_tw, curr_time = get_tw_mask2(tours[vehicle_id], step, instance) | |
curr_time = ((curr_time - raw_time_window[1:].min()) / (raw_time_window[1:].max() - raw_time_window[1:].min())).item() | |
mask = torch.from_numpy((~visited) & not_exceed_tw) | |
mask[0] = True # depot is always feasible | |
data.append({ | |
"node_feats": node_feats, | |
"curr_node_id": torch.tensor(tours[vehicle_id][step-1]).to(torch.long), | |
"next_node_id": torch.tensor(tours[vehicle_id][step]).to(torch.long), | |
"mask": mask, | |
"state": torch.FloatTensor([curr_time]), | |
"labels": torch.tensor(label).to(torch.long) | |
}) | |
if fname is not None: | |
save_dataset(data, fname, display=False) | |
return fname | |
else: | |
return data | |
# @override | |
def load_sequentially(self, instance, fname=None): | |
data = [] | |
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim] | |
raw_time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) | |
time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) # [num_nodes x 2] | |
time_window = (time_window - time_window[1:].min()) / (time_window[1:].max() - time_window[1:].min()) # min-max normalization | |
node_feats = torch.cat((coords, time_window), -1) # [num_nodes x (coord_dim + 2)] | |
tours = instance["tour"] | |
labels = instance["labels"] | |
num_nodes, node_dim = node_feats.size() | |
for vehicle_id in range(len(labels)): | |
seq_length = len(labels[vehicle_id]) | |
curr_node_id_list = []; next_node_id_list = [] | |
mask_list = []; state_list = []; label_list_ = [] | |
for step, label in labels[vehicle_id]: | |
visited = get_visited_mask(tours[vehicle_id], step, instance) | |
not_exceed_tw, curr_time = get_tw_mask2(tours[vehicle_id], step, instance) | |
curr_time = (curr_time - raw_time_window[1:].min()) / (raw_time_window[1:].max() - raw_time_window[1:].min()).item() | |
mask = torch.from_numpy((~visited) & not_exceed_tw) | |
mask[0] = True # depot is always feasible | |
curr_node_id_list.append(tours[vehicle_id][step-1]) | |
next_node_id_list.append(tours[vehicle_id][step]) | |
mask_list.append(mask) | |
state_list.append([curr_time]) | |
label_list_.append(label) | |
data.append({ | |
"node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats] | |
"curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length] | |
"next_node_id": torch.LongTensor(next_node_id_list), # [seq_length] | |
"mask": torch.stack(mask_list, 0), # [seq_length x num_nodes] | |
"state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)] | |
"labels": torch.LongTensor(label_list_) # [seq_length] | |
}) | |
if fname is not None: | |
save_dataset(data, fname, display=False) | |
return fname | |
else: | |
return data | |
def load_tsptw_sequentially(instance, fname=None): | |
data = [] | |
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim] | |
raw_time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) | |
time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) # [num_nodes x 2] | |
time_window = (time_window - time_window[1:].min()) / (time_window[1:].max() - time_window[1:].min()) # min-max normalization | |
node_feats = torch.cat((coords, time_window), -1) # [num_nodes x (coord_dim + 2)] | |
tours = instance["tour"] | |
labels = instance["labels"] | |
num_nodes, node_dim = node_feats.size() | |
for vehicle_id in range(len(labels)): | |
seq_length = len(tours[vehicle_id]) | |
curr_node_id_list = []; next_node_id_list = [] | |
mask_list = []; state_list = [] | |
for step in range(1, len(tours[vehicle_id])): | |
visited = get_visited_mask(tours[vehicle_id], step, instance) | |
not_exceed_tw, curr_time = get_tw_mask2(tours[vehicle_id], step, instance) | |
curr_time = (curr_time - raw_time_window[1:].min()) / (raw_time_window[1:].max() - raw_time_window[1:].min()).item() | |
mask = torch.from_numpy((~visited) & not_exceed_tw) | |
mask[0] = True # depot is always feasible | |
curr_node_id_list.append(tours[vehicle_id][step-1]) | |
next_node_id_list.append(tours[vehicle_id][step]) | |
mask_list.append(mask) | |
state_list.append([curr_time]) | |
data.append({ | |
"node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats] | |
"curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length] | |
"next_node_id": torch.LongTensor(next_node_id_list), # [seq_length] | |
"mask": torch.stack(mask_list, 0), # [seq_length x num_nodes] | |
"state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)] | |
}) | |
if fname is not None: | |
save_dataset(data, fname, display=False) | |
return fname | |
else: | |
return data |