Spaces:
Running
Running
File size: 14,071 Bytes
719d0db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import random
from tqdm import tqdm
import multiprocessing
from utils.utils import save_dataset
import numpy as np
import torch
from scipy.spatial.distance import cdist
from utils.utils import load_dataset
from utils.data_utils.dataset_base import DatasetBase, DataLoaderBase
from models.solvers.general_solver import GeneralSolver
from models.classifiers.ground_truth.ground_truth_base import get_tw_mask, get_visited_mask
from models.classifiers.ground_truth.ground_truth_tsptw import GroundTruthTSPTW
class TSPTWDataset(DatasetBase):
def __init__(self, coord_dim, num_samples, num_nodes, solver="ortools", classifier="ortools", annotation=True, parallel=True, random_seed=1234, num_cpus=os.cpu_count(),
grid_size=100, is_integer_instance=False, distribution="da_silva", max_tw_gap=10):
"""
Parameters
----------
num_samples: int
number of samples(instances)
num_nodes: int
number of nodes
grid_size: int or float32
x-pos/y-pos of cities will be in the range [0, grid_size]
max_tw_gap:
maximum time windows gap allowed between the cities constituing the feasible tour
max_tw_size:
time windows of cities will be in the range [0, max_tw_size]
is_integer_instance: bool
True if we want the distances and time widows to have integer values
seed: int
seed used for generating the instance. -1 means no seed (instance is random)
"""
super().__init__(coord_dim, num_samples, num_nodes, annotation, parallel, random_seed, num_cpus)
self.grid_size = grid_size
self.is_integer_instance = is_integer_instance
self.da_silva_style = distribution == "da_silva"
self.max_tw_size = 1000 if self.da_silva_style else 100
self.max_tw_gap = max_tw_gap
solver_type = solver
classifier_type = classifier
self.tsptw_solver = GeneralSolver(problem="tsptw", solver_type=solver_type)
self.classifier = GroundTruthTSPTW(solver_type=classifier_type)
def generate_instance(self, seed):
"""
Parameters
----------
seed: int
random seed
Returns
--------
a feasible TSPTW instance randomly generated using the parameters
-------
"""
rand = random.Random()
if seed is not None:
rand.seed(seed)
np.random.seed(seed)
#-----------------------------
# generate locations of nodes
#-----------------------------
coords = np.random.uniform(size=(self.num_nodes, self.coord_dim))
#-------------------------------------------------------------------------------
# compute travel time b/w two nodes, which is identical to distance b/w the two
#-------------------------------------------------------------------------------
travel_time = cdist(coords, coords) * self.grid_size # [num_nodes x num_nodes]
if self.is_integer_instance:
travel_time = travel_time.round().astype(np.int64)
#------------------------------------------------------------------
# generate a random tour to guarantee existence of a fieasble tour
#------------------------------------------------------------------
random_solution = list(range(1, self.num_nodes))
rand.shuffle(random_solution)
random_solution = [0] + random_solution # add the depot (node_id=0)
#----------------------
# generate time window
#----------------------
time_windows = np.zeros((self.num_nodes, 2))
time_windows[0, :] = [0, 100 * self.grid_size] # time window for the depot
total_dist = 0
for i in range(1, self.num_nodes):
prev_node_id = random_solution[i-1]
cur_node_id = random_solution[i]
cur_dist = travel_time[prev_node_id][cur_node_id]
tw_lb_min = time_windows[prev_node_id, 0] + cur_dist
total_dist += cur_dist
if self.da_silva_style:
# Style by Da Silva and Urrutia, 2010, "A VNS Heuristic for TSPTW"
rand_tw_lb = rand.uniform(total_dist - self.max_tw_size / 2, total_dist)
rand_tw_ub = rand.uniform(total_dist, total_dist + self.max_tw_size / 2)
else:
# Cappart et al. style 'propagates' the time windows resulting in little overlap / easier instances
rand_tw_lb = rand.uniform(tw_lb_min, tw_lb_min + self.max_tw_gap)
rand_tw_ub = rand.uniform(rand_tw_lb, rand_tw_lb + self.max_tw_size)
if self.is_integer_instance:
rand_tw_lb = np.floor(rand_tw_lb)
rand_tw_ub = np.ceil(rand_tw_ub)
time_windows[cur_node_id, :] = [rand_tw_lb, rand_tw_ub] # [num_nodes x 2(start, end)]
if self.is_integer_instance:
time_windows = time_windows.astype(np.int64)
# Don't store travel time since it takes up much
return {
"coords": coords,
"time_window": time_windows / self.grid_size,
"grid_size": np.array([1.0])
}
def annotate(self, instance):
"""
Paramters
---------
instance: dict
coords: np.array [num_nodes x coord_dim]
time_window: np.array [num_nodes x 2(start, end)]
grid_size: int or float32
Returns
-------
labeled instance: dict
coords: np.array [num_nodes x coord_dim]
time_window: np.array [num_nodes x 2(start, end)]
grid_size: int or float32
tour: np.array [seq_length]
labels: 2d list [num_labeled_step x 2(step, label)]
"""
# solve TSPTW
num_nodes = len(instance["coords"])
node_feats = instance
tsptw_tour = self.tsptw_solver.solve(node_feats)
if len(tsptw_tour[0]) != num_nodes + 1:
# print("Could not find a feasible tour! Skip current instance.")
return
# annotate each path
inputs = self.classifier.get_inputs(tsptw_tour, 0, node_feats)
labels = self.classifier(inputs, annotation=True)
if labels is None:
return
instance.update({"tour": tsptw_tour, "labels": labels})
return instance
def get_tw_mask2(tour, step, node_feats):
"""
Nodes whose tw exceeds current_time -> infeasible, otherwise -> feasible.
Parameters
----------
tour: list [seq_length]
step: int
node_feats: dict of np.array
Returns
-------
mask_tw: np.array [num_nodes]
"""
node_feats = node_feats.copy()
coords = node_feats["coords"]
time_window = node_feats["time_window"]
num_nodes = len(coords)
curr_time = 0.0
not_exceed_tw = np.ones(num_nodes).astype(np.int32)
for i in range(1, step):
prev_id = tour[i - 1]
curr_id = tour[i]
travel_time = np.linalg.norm(coords[prev_id] - coords[curr_id])
# assert curr_time + travel_time < time_window[curr_id, 1], f"Invalid tour! arrival_time: {curr_time + travel_time}, time_window: {time_window[curr_id]}"
if curr_time + travel_time < time_window[curr_id, 0]:
curr_time = time_window[curr_id, 0].copy()
else:
curr_time += travel_time
next_time = curr_time + np.linalg.norm(coords[tour[step-1]][None, :] - coords, axis=-1) # [num_nodes] TODO: check
not_exceed_tw[next_time > time_window[:, 1]] = 0
not_exceed_tw = not_exceed_tw > 0
return not_exceed_tw, curr_time
class TSPTWDataloader(DataLoaderBase):
# @override
def load_randomly(self, instance, fname=None):
data = []
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim]
raw_time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0)
time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) # [num_nodes x 2]
time_window = (time_window - time_window[1:].min()) / (time_window[1:].max() - time_window[1:].min()) # min-max normalization
node_feats = torch.cat((coords, time_window), -1) # [num_nodes x (coord_dim + 2)]
tours = instance["tour"]
labels = instance["labels"]
for vehicle_id in range(len(labels)):
for step, label in labels[vehicle_id]:
visited = get_visited_mask(tours[vehicle_id], step, instance)
not_exceed_tw, curr_time = get_tw_mask2(tours[vehicle_id], step, instance)
curr_time = ((curr_time - raw_time_window[1:].min()) / (raw_time_window[1:].max() - raw_time_window[1:].min())).item()
mask = torch.from_numpy((~visited) & not_exceed_tw)
mask[0] = True # depot is always feasible
data.append({
"node_feats": node_feats,
"curr_node_id": torch.tensor(tours[vehicle_id][step-1]).to(torch.long),
"next_node_id": torch.tensor(tours[vehicle_id][step]).to(torch.long),
"mask": mask,
"state": torch.FloatTensor([curr_time]),
"labels": torch.tensor(label).to(torch.long)
})
if fname is not None:
save_dataset(data, fname, display=False)
return fname
else:
return data
# @override
def load_sequentially(self, instance, fname=None):
data = []
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim]
raw_time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0)
time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) # [num_nodes x 2]
time_window = (time_window - time_window[1:].min()) / (time_window[1:].max() - time_window[1:].min()) # min-max normalization
node_feats = torch.cat((coords, time_window), -1) # [num_nodes x (coord_dim + 2)]
tours = instance["tour"]
labels = instance["labels"]
num_nodes, node_dim = node_feats.size()
for vehicle_id in range(len(labels)):
seq_length = len(labels[vehicle_id])
curr_node_id_list = []; next_node_id_list = []
mask_list = []; state_list = []; label_list_ = []
for step, label in labels[vehicle_id]:
visited = get_visited_mask(tours[vehicle_id], step, instance)
not_exceed_tw, curr_time = get_tw_mask2(tours[vehicle_id], step, instance)
curr_time = (curr_time - raw_time_window[1:].min()) / (raw_time_window[1:].max() - raw_time_window[1:].min()).item()
mask = torch.from_numpy((~visited) & not_exceed_tw)
mask[0] = True # depot is always feasible
curr_node_id_list.append(tours[vehicle_id][step-1])
next_node_id_list.append(tours[vehicle_id][step])
mask_list.append(mask)
state_list.append([curr_time])
label_list_.append(label)
data.append({
"node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats]
"curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length]
"next_node_id": torch.LongTensor(next_node_id_list), # [seq_length]
"mask": torch.stack(mask_list, 0), # [seq_length x num_nodes]
"state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)]
"labels": torch.LongTensor(label_list_) # [seq_length]
})
if fname is not None:
save_dataset(data, fname, display=False)
return fname
else:
return data
def load_tsptw_sequentially(instance, fname=None):
data = []
coords = torch.FloatTensor(instance["coords"]) # [num_nodes x coord_dim]
raw_time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0)
time_window = torch.FloatTensor(instance["time_window"]).clamp(0.0) # [num_nodes x 2]
time_window = (time_window - time_window[1:].min()) / (time_window[1:].max() - time_window[1:].min()) # min-max normalization
node_feats = torch.cat((coords, time_window), -1) # [num_nodes x (coord_dim + 2)]
tours = instance["tour"]
labels = instance["labels"]
num_nodes, node_dim = node_feats.size()
for vehicle_id in range(len(labels)):
seq_length = len(tours[vehicle_id])
curr_node_id_list = []; next_node_id_list = []
mask_list = []; state_list = []
for step in range(1, len(tours[vehicle_id])):
visited = get_visited_mask(tours[vehicle_id], step, instance)
not_exceed_tw, curr_time = get_tw_mask2(tours[vehicle_id], step, instance)
curr_time = (curr_time - raw_time_window[1:].min()) / (raw_time_window[1:].max() - raw_time_window[1:].min()).item()
mask = torch.from_numpy((~visited) & not_exceed_tw)
mask[0] = True # depot is always feasible
curr_node_id_list.append(tours[vehicle_id][step-1])
next_node_id_list.append(tours[vehicle_id][step])
mask_list.append(mask)
state_list.append([curr_time])
data.append({
"node_feats": node_feats.unsqueeze(0).expand(seq_length, num_nodes, node_dim), # [seq_length x num_nodes x node_feats]
"curr_node_id": torch.LongTensor(curr_node_id_list), # [seq_length]
"next_node_id": torch.LongTensor(next_node_id_list), # [seq_length]
"mask": torch.stack(mask_list, 0), # [seq_length x num_nodes]
"state": torch.FloatTensor(state_list), # [seq_length x state_dim(1)]
})
if fname is not None:
save_dataset(data, fname, display=False)
return fname
else:
return data |