Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
class AttentionEdgeEncoder(nn.Module): | |
def __init__(self, state_dim, emb_dim, dropout): | |
super().__init__() | |
self.state_dim = state_dim | |
self.emb_dim = emb_dim | |
self.norm_factor = 1 / math.sqrt(emb_dim) | |
# initial embedding for state | |
if state_dim > 0: | |
self.init_linear_state = nn.Linear(state_dim, emb_dim) | |
# An attention layer | |
self.w_q = nn.Parameter(torch.FloatTensor((2 + int(state_dim > 0)) * emb_dim, emb_dim)) | |
self.w_k = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim)) | |
self.w_v = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim)) | |
# out linear layer | |
self.out_linear = nn.Linear(emb_dim, emb_dim) | |
# Dropout | |
self.dropout = nn.Dropout(dropout) | |
self.reset_parameters() | |
def reset_parameters(self): | |
for param in self.parameters(): | |
stdv = 1. / math.sqrt(param.size(-1)) | |
param.data.uniform_(-stdv, stdv) | |
def forward(self, inputs, node_emb): | |
""" | |
Paramters | |
--------- | |
inputs: dict | |
curr_node_id: torch.LongTensor [batch_size] | |
next_node_id: torch.LongTensor [batch_size] | |
mask: torch.LongTensor [batch_size x num_nodes] | |
state: torch.FloatTensor [batch_size x state_dim] | |
node_emb: torch.tensor [batch_size x num_nodes x emb_dim] | |
node embeddings obtained from the node encoder | |
Returns | |
------- | |
h: torch.tensor [batch_size x emb_dim] | |
edge embeddings | |
""" | |
curr_node_id = inputs["curr_node_id"] | |
next_node_id = inputs["next_node_id"] | |
mask = inputs["mask"] | |
state = inputs["state"] | |
batch_size = curr_node_id.size(0) | |
#-------------------------------- | |
# generate queries, keys, values | |
#-------------------------------- | |
node_emb = self.dropout(node_emb) | |
curr_emb = node_emb.gather(1, curr_node_id[:, None, None].expand(batch_size, 1, self.emb_dim)) | |
next_emb = node_emb.gather(1, next_node_id[:, None, None].expand(batch_size, 1, self.emb_dim)) | |
if state is not None and self.state_dim > 0: | |
state_emb = self.init_linear_state(state) # [batch_size x emb_dim] | |
input_q = torch.cat((curr_emb, next_emb, state_emb[:, None, :]), -1) # [batch_size x 1 x (3*emb_dim)] | |
else: | |
input_q = torch.cat((curr_emb, next_emb), -1) # [batch_size x 1 x (2*emb_dim)] | |
input_kv = torch.cat((curr_emb.expand_as(node_emb), node_emb), -1) # [batch_size x num_nodes x (2*emb_dim)] | |
#-------------------- | |
# An attention layer | |
#-------------------- | |
q = torch.matmul(input_q, self.w_q) # [batch_size x 1 x emb_dim] | |
k = torch.matmul(input_kv, self.w_k) # [batch_size x num_nodes x emb_dim] | |
v = torch.matmul(input_kv, self.w_v) # [batch_size x num_nodes x emb_dim] | |
compatibility = self.norm_factor * torch.matmul(q, k.transpose(-2, -1)) # [batch_size x 1 x num_nodes] | |
compatibility[(~mask).unsqueeze(1).expand_as(compatibility)] = -math.inf | |
attn = torch.softmax(compatibility, dim=-1) | |
h = torch.matmul(attn, v) # [batch_size x 1 x emb_dim] | |
h = h.squeeze(1) # [batch_size x emb_dim] | |
return self.out_linear(h) + q.squeeze(1) |