Spaces:
Running
Running
File size: 3,409 Bytes
719d0db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import math
import torch
import torch.nn as nn
class AttentionEdgeEncoder(nn.Module):
def __init__(self, state_dim, emb_dim, dropout):
super().__init__()
self.state_dim = state_dim
self.emb_dim = emb_dim
self.norm_factor = 1 / math.sqrt(emb_dim)
# initial embedding for state
if state_dim > 0:
self.init_linear_state = nn.Linear(state_dim, emb_dim)
# An attention layer
self.w_q = nn.Parameter(torch.FloatTensor((2 + int(state_dim > 0)) * emb_dim, emb_dim))
self.w_k = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim))
self.w_v = nn.Parameter(torch.FloatTensor(2 * emb_dim, emb_dim))
# out linear layer
self.out_linear = nn.Linear(emb_dim, emb_dim)
# Dropout
self.dropout = nn.Dropout(dropout)
self.reset_parameters()
def reset_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, inputs, node_emb):
"""
Paramters
---------
inputs: dict
curr_node_id: torch.LongTensor [batch_size]
next_node_id: torch.LongTensor [batch_size]
mask: torch.LongTensor [batch_size x num_nodes]
state: torch.FloatTensor [batch_size x state_dim]
node_emb: torch.tensor [batch_size x num_nodes x emb_dim]
node embeddings obtained from the node encoder
Returns
-------
h: torch.tensor [batch_size x emb_dim]
edge embeddings
"""
curr_node_id = inputs["curr_node_id"]
next_node_id = inputs["next_node_id"]
mask = inputs["mask"]
state = inputs["state"]
batch_size = curr_node_id.size(0)
#--------------------------------
# generate queries, keys, values
#--------------------------------
node_emb = self.dropout(node_emb)
curr_emb = node_emb.gather(1, curr_node_id[:, None, None].expand(batch_size, 1, self.emb_dim))
next_emb = node_emb.gather(1, next_node_id[:, None, None].expand(batch_size, 1, self.emb_dim))
if state is not None and self.state_dim > 0:
state_emb = self.init_linear_state(state) # [batch_size x emb_dim]
input_q = torch.cat((curr_emb, next_emb, state_emb[:, None, :]), -1) # [batch_size x 1 x (3*emb_dim)]
else:
input_q = torch.cat((curr_emb, next_emb), -1) # [batch_size x 1 x (2*emb_dim)]
input_kv = torch.cat((curr_emb.expand_as(node_emb), node_emb), -1) # [batch_size x num_nodes x (2*emb_dim)]
#--------------------
# An attention layer
#--------------------
q = torch.matmul(input_q, self.w_q) # [batch_size x 1 x emb_dim]
k = torch.matmul(input_kv, self.w_k) # [batch_size x num_nodes x emb_dim]
v = torch.matmul(input_kv, self.w_v) # [batch_size x num_nodes x emb_dim]
compatibility = self.norm_factor * torch.matmul(q, k.transpose(-2, -1)) # [batch_size x 1 x num_nodes]
compatibility[(~mask).unsqueeze(1).expand_as(compatibility)] = -math.inf
attn = torch.softmax(compatibility, dim=-1)
h = torch.matmul(attn, v) # [batch_size x 1 x emb_dim]
h = h.squeeze(1) # [batch_size x emb_dim]
return self.out_linear(h) + q.squeeze(1) |