Spaces:
Sleeping
Sleeping
# import os | |
# os.system("sudo apt-get install xclip") | |
# import nltk | |
# from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException | |
# from fastapi.security.api_key import APIKeyHeader | |
# from typing import Optional, Annotated | |
# from fastapi.encoders import jsonable_encoder | |
# from PIL import Image | |
# from io import BytesIO | |
# import pytesseract | |
# from nltk.tokenize import sent_tokenize | |
# from transformers import MarianMTModel, MarianTokenizer | |
# nltk.download('punkt') | |
# API_KEY = os.environ.get("API_KEY") | |
# app = FastAPI() | |
# api_key_header = APIKeyHeader(name="api_key", auto_error=False) | |
# def get_api_key(api_key: Optional[str] = Depends(api_key_header)): | |
# if api_key is None or api_key != API_KEY: | |
# raise HTTPException(status_code=401, detail="Unauthorized access") | |
# return api_key | |
# # Image path | |
# img_dir = "./data" | |
# # Get tesseract language list | |
# choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] | |
# # Convert tesseract language list to pytesseract language | |
# def ocr_lang(lang_list): | |
# lang_str = "" | |
# lang_len = len(lang_list) | |
# if lang_len == 1: | |
# return lang_list[0] | |
# else: | |
# for i in range(lang_len): | |
# lang_list.insert(lang_len - i, "+") | |
# lang_str = "".join(lang_list[:-1]) | |
# return lang_str | |
# # ocr tesseract | |
# def ocr_tesseract(img, languages): | |
# print("[img]", img) | |
# print("[languages]", languages) | |
# ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) | |
# return ocr_str | |
# @app.post("/api/ocr", response_model=dict) | |
# async def ocr( | |
# api_key: str = Depends(get_api_key), | |
# image: UploadFile = File(...), | |
# # languages: list = Body(["eng"]) | |
# ): | |
# try: | |
# content = await image.read() | |
# image = Image.open(BytesIO(content)) | |
# print("[image]",image) | |
# if hasattr(pytesseract, "image_to_string"): | |
# print("Image to string function is available") | |
# # print(pytesseract.image_to_string(image, lang = 'eng')) | |
# text = ocr_tesseract(image, ['eng']) | |
# else: | |
# print("Image to string function is not available") | |
# # text = pytesseract.image_to_string(image, lang="+".join(languages)) | |
# except Exception as e: | |
# return {"error": str(e)}, 500 | |
# return {"ImageText": "text"} | |
# @app.post("/api/translate", response_model=dict) | |
# async def translate( | |
# api_key: str = Depends(get_api_key), | |
# text: str = Body(...), | |
# src: str = "en", | |
# trg: str = "zh", | |
# ): | |
# if api_key != API_KEY: | |
# return {"error": "Invalid API key"}, 401 | |
# tokenizer, model = get_model(src, trg) | |
# translated_text = "" | |
# for sentence in sent_tokenize(text): | |
# translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0] | |
# translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n" | |
# return jsonable_encoder({"translated_text": translated_text}) | |
# def get_model(src: str, trg: str): | |
# model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" | |
# tokenizer = MarianTokenizer.from_pretrained(model_name) | |
# model = MarianMTModel.from_pretrained(model_name) | |
# return tokenizer, model | |
# OCR Translate v0.2 | |
import os | |
os.system("sudo apt-get install xclip") | |
# import gradio as gr | |
import nltk | |
import pyclip | |
import pytesseract | |
from nltk.tokenize import sent_tokenize | |
from transformers import MarianMTModel, MarianTokenizer | |
# Added below code | |
from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException | |
from fastapi.security.api_key import APIKeyHeader | |
from typing import Optional, Annotated | |
from fastapi.encoders import jsonable_encoder | |
from PIL import Image | |
from io import BytesIO | |
API_KEY = os.environ.get("API_KEY") | |
app = FastAPI() | |
api_key_header = APIKeyHeader(name="api_key", auto_error=False) | |
def get_api_key(api_key: Optional[str] = Depends(api_key_header)): | |
if api_key is None or api_key != API_KEY: | |
raise HTTPException(status_code=401, detail="Unauthorized access") | |
return api_key | |
async def ocr( | |
api_key: str = Depends(get_api_key), | |
image: UploadFile = File(...), | |
# languages: list = Body(["eng"]) | |
): | |
try: | |
content = await image.read() | |
image = Image.open(BytesIO(content)) | |
print("[image]",image) | |
if hasattr(pytesseract, "image_to_string"): | |
print("Image to string function is available") | |
# print(pytesseract.image_to_string(image, lang = 'eng')) | |
text = ocr_tesseract(image, ['eng']) | |
else: | |
print("Image to string function is not available") | |
# text = pytesseract.image_to_string(image, lang="+".join(languages)) | |
except Exception as e: | |
return {"error": str(e)}, 500 | |
return {"ImageText": "text"} | |
nltk.download('punkt') | |
OCR_TR_DESCRIPTION = '''# OCR Translate v0.2 | |
<div id="content_align">OCR translation system based on Tesseract</div>''' | |
# Image path | |
img_dir = "./data" | |
# Get tesseract language list | |
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] | |
# Translation model selection | |
def model_choice(src="en", trg="zh"): | |
# https://huggingface.co/Helsinki-NLP/opus-mt-zh-en | |
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh | |
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name | |
tokenizer = MarianTokenizer.from_pretrained(model_name) # tokenizer | |
model = MarianMTModel.from_pretrained(model_name) # Model | |
return tokenizer, model | |
# Convert tesseract language list to pytesseract language | |
def ocr_lang(lang_list): | |
lang_str = "" | |
lang_len = len(lang_list) | |
if lang_len == 1: | |
return lang_list[0] | |
else: | |
for i in range(lang_len): | |
lang_list.insert(lang_len - i, "+") | |
lang_str = "".join(lang_list[:-1]) | |
return lang_str | |
# ocr tesseract | |
def ocr_tesseract(img, languages): | |
print("[img]", img) | |
print("[languages]", languages) | |
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) | |
return ocr_str | |
# Clear | |
def clear_content(): | |
return None | |
# copy to clipboard | |
def cp_text(input_text): | |
# sudo apt-get install xclip | |
try: | |
pyclip.copy(input_text) | |
except Exception as e: | |
print("sudo apt-get install xclip") | |
print(e) | |
# clear clipboard | |
def cp_clear(): | |
pyclip.clear() | |
# translate | |
def translate(input_text, inputs_transStyle): | |
# reference:https://huggingface.co/docs/transformers/model_doc/marian | |
if input_text is None or input_text == "": | |
return "System prompt: There is no content to translate!" | |
# Select translation model | |
trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1] | |
tokenizer, model = model_choice(trans_src, trans_trg) | |
translate_text = "" | |
input_text_list = input_text.split("\n\n") | |
translate_text_list_tmp = [] | |
for i in range(len(input_text_list)): | |
if input_text_list[i] != "": | |
translate_text_list_tmp.append(input_text_list[i]) | |
for i in range(len(translate_text_list_tmp)): | |
translated_sub = model.generate( | |
**tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True)) | |
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub] | |
translate_text_sub = "".join(tgt_text_sub) | |
translate_text = translate_text + "\n\n" + translate_text_sub | |
return translate_text[2:] | |
# def main(): | |
# with gr.Blocks(css='style.css') as ocr_tr: | |
# gr.Markdown(OCR_TR_DESCRIPTION) | |
# # -------------- OCR text extraction -------------- | |
# with gr.Box(): | |
# with gr.Row(): | |
# gr.Markdown("### Step 01: Text Extraction") | |
# with gr.Row(): | |
# with gr.Column(): | |
# with gr.Row(): | |
# inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image") | |
# with gr.Row(): | |
# inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"], | |
# type="value", | |
# value=['eng'], | |
# label='language') | |
# with gr.Row(): | |
# clear_img_btn = gr.Button('Clear') | |
# ocr_btn = gr.Button(value='OCR Extraction', variant="primary") | |
# with gr.Column(): | |
# with gr.Row(): | |
# outputs_text = gr.Textbox(label="Extract content", lines=20) | |
# with gr.Row(): | |
# inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"], | |
# type="value", | |
# value="zh-en", | |
# label='translation mode') | |
# with gr.Row(): | |
# clear_text_btn = gr.Button('Clear') | |
# translate_btn = gr.Button(value='Translate', variant="primary") | |
# with gr.Row(): | |
# example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]], | |
# ["./data/test03.png", ["chi_sim"]]] | |
# gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False) | |
# # -------------- translate -------------- | |
# with gr.Box(): | |
# with gr.Row(): | |
# gr.Markdown("### Step 02: Translation") | |
# with gr.Row(): | |
# outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) | |
# with gr.Row(): | |
# cp_clear_btn = gr.Button(value='Clear Clipboard') | |
# cp_btn = gr.Button(value='Copy to clipboard', variant="primary") | |
# # ---------------------- OCR Tesseract ---------------------- | |
# ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ | |
# outputs_text,]) | |
# clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) | |
# # ---------------------- translate ---------------------- | |
# translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text]) | |
# clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) | |
# # ---------------------- copy to clipboard ---------------------- | |
# cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) | |
# cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) | |
# ocr_tr.launch(inbrowser=True) | |
# if __name__ == '__main__': | |
# main() | |