# import os # os.system("sudo apt-get install xclip") # import nltk # from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException # from fastapi.security.api_key import APIKeyHeader # from typing import Optional, Annotated # from fastapi.encoders import jsonable_encoder # from PIL import Image # from io import BytesIO # import pytesseract # from nltk.tokenize import sent_tokenize # from transformers import MarianMTModel, MarianTokenizer # nltk.download('punkt') # API_KEY = os.environ.get("API_KEY") # app = FastAPI() # api_key_header = APIKeyHeader(name="api_key", auto_error=False) # def get_api_key(api_key: Optional[str] = Depends(api_key_header)): # if api_key is None or api_key != API_KEY: # raise HTTPException(status_code=401, detail="Unauthorized access") # return api_key # # Image path # img_dir = "./data" # # Get tesseract language list # choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] # # Convert tesseract language list to pytesseract language # def ocr_lang(lang_list): # lang_str = "" # lang_len = len(lang_list) # if lang_len == 1: # return lang_list[0] # else: # for i in range(lang_len): # lang_list.insert(lang_len - i, "+") # lang_str = "".join(lang_list[:-1]) # return lang_str # # ocr tesseract # def ocr_tesseract(img, languages): # print("[img]", img) # print("[languages]", languages) # ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) # return ocr_str # @app.post("/api/ocr", response_model=dict) # async def ocr( # api_key: str = Depends(get_api_key), # image: UploadFile = File(...), # # languages: list = Body(["eng"]) # ): # try: # content = await image.read() # image = Image.open(BytesIO(content)) # print("[image]",image) # if hasattr(pytesseract, "image_to_string"): # print("Image to string function is available") # # print(pytesseract.image_to_string(image, lang = 'eng')) # text = ocr_tesseract(image, ['eng']) # else: # print("Image to string function is not available") # # text = pytesseract.image_to_string(image, lang="+".join(languages)) # except Exception as e: # return {"error": str(e)}, 500 # return {"ImageText": "text"} # @app.post("/api/translate", response_model=dict) # async def translate( # api_key: str = Depends(get_api_key), # text: str = Body(...), # src: str = "en", # trg: str = "zh", # ): # if api_key != API_KEY: # return {"error": "Invalid API key"}, 401 # tokenizer, model = get_model(src, trg) # translated_text = "" # for sentence in sent_tokenize(text): # translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0] # translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n" # return jsonable_encoder({"translated_text": translated_text}) # def get_model(src: str, trg: str): # model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # tokenizer = MarianTokenizer.from_pretrained(model_name) # model = MarianMTModel.from_pretrained(model_name) # return tokenizer, model # OCR Translate v0.2 import os os.system("sudo apt-get install xclip") # import gradio as gr import nltk import pyclip import pytesseract from nltk.tokenize import sent_tokenize from transformers import MarianMTModel, MarianTokenizer # Added below code from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException from fastapi.security.api_key import APIKeyHeader from typing import Optional, Annotated from fastapi.encoders import jsonable_encoder from PIL import Image from io import BytesIO API_KEY = os.environ.get("API_KEY") app = FastAPI() api_key_header = APIKeyHeader(name="api_key", auto_error=False) def get_api_key(api_key: Optional[str] = Depends(api_key_header)): if api_key is None or api_key != API_KEY: raise HTTPException(status_code=401, detail="Unauthorized access") return api_key @app.post("/api/ocr", response_model=dict) async def ocr( api_key: str = Depends(get_api_key), image: UploadFile = File(...), # languages: list = Body(["eng"]) ): try: content = await image.read() image = Image.open(BytesIO(content)) print("[image]",image) if hasattr(pytesseract, "image_to_string"): print("Image to string function is available") # print(pytesseract.image_to_string(image, lang = 'eng')) text = ocr_tesseract(image, ['eng']) else: print("Image to string function is not available") # text = pytesseract.image_to_string(image, lang="+".join(languages)) except Exception as e: return {"error": str(e)}, 500 return {"ImageText": "text"} nltk.download('punkt') OCR_TR_DESCRIPTION = '''# OCR Translate v0.2
OCR translation system based on Tesseract
''' # Image path img_dir = "./data" # Get tesseract language list choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] # Translation model selection def model_choice(src="en", trg="zh"): # https://huggingface.co/Helsinki-NLP/opus-mt-zh-en # https://huggingface.co/Helsinki-NLP/opus-mt-en-zh model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name tokenizer = MarianTokenizer.from_pretrained(model_name) # tokenizer model = MarianMTModel.from_pretrained(model_name) # Model return tokenizer, model # Convert tesseract language list to pytesseract language def ocr_lang(lang_list): lang_str = "" lang_len = len(lang_list) if lang_len == 1: return lang_list[0] else: for i in range(lang_len): lang_list.insert(lang_len - i, "+") lang_str = "".join(lang_list[:-1]) return lang_str # ocr tesseract def ocr_tesseract(img, languages): print("[img]", img) print("[languages]", languages) ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) return ocr_str # Clear def clear_content(): return None # copy to clipboard def cp_text(input_text): # sudo apt-get install xclip try: pyclip.copy(input_text) except Exception as e: print("sudo apt-get install xclip") print(e) # clear clipboard def cp_clear(): pyclip.clear() # translate def translate(input_text, inputs_transStyle): # reference:https://huggingface.co/docs/transformers/model_doc/marian if input_text is None or input_text == "": return "System prompt: There is no content to translate!" # Select translation model trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1] tokenizer, model = model_choice(trans_src, trans_trg) translate_text = "" input_text_list = input_text.split("\n\n") translate_text_list_tmp = [] for i in range(len(input_text_list)): if input_text_list[i] != "": translate_text_list_tmp.append(input_text_list[i]) for i in range(len(translate_text_list_tmp)): translated_sub = model.generate( **tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True)) tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub] translate_text_sub = "".join(tgt_text_sub) translate_text = translate_text + "\n\n" + translate_text_sub return translate_text[2:] # def main(): # with gr.Blocks(css='style.css') as ocr_tr: # gr.Markdown(OCR_TR_DESCRIPTION) # # -------------- OCR text extraction -------------- # with gr.Box(): # with gr.Row(): # gr.Markdown("### Step 01: Text Extraction") # with gr.Row(): # with gr.Column(): # with gr.Row(): # inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image") # with gr.Row(): # inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"], # type="value", # value=['eng'], # label='language') # with gr.Row(): # clear_img_btn = gr.Button('Clear') # ocr_btn = gr.Button(value='OCR Extraction', variant="primary") # with gr.Column(): # with gr.Row(): # outputs_text = gr.Textbox(label="Extract content", lines=20) # with gr.Row(): # inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"], # type="value", # value="zh-en", # label='translation mode') # with gr.Row(): # clear_text_btn = gr.Button('Clear') # translate_btn = gr.Button(value='Translate', variant="primary") # with gr.Row(): # example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]], # ["./data/test03.png", ["chi_sim"]]] # gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False) # # -------------- translate -------------- # with gr.Box(): # with gr.Row(): # gr.Markdown("### Step 02: Translation") # with gr.Row(): # outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) # with gr.Row(): # cp_clear_btn = gr.Button(value='Clear Clipboard') # cp_btn = gr.Button(value='Copy to clipboard', variant="primary") # # ---------------------- OCR Tesseract ---------------------- # ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ # outputs_text,]) # clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) # # ---------------------- translate ---------------------- # translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text]) # clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) # # ---------------------- copy to clipboard ---------------------- # cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) # cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) # ocr_tr.launch(inbrowser=True) # if __name__ == '__main__': # main()