obichimav's picture
Update app.py
2541bac verified
raw
history blame
18.3 kB
# # imports
# import os
# import json
# import base64
# from io import BytesIO
# from dotenv import load_dotenv
# from openai import OpenAI
# import gradio as gr
# import numpy as np
# from PIL import Image, ImageDraw
# import requests
# import torch
# from transformers import (
# AutoProcessor,
# Owlv2ForObjectDetection,
# AutoModelForZeroShotObjectDetection
# )
# # from transformers import AutoProcessor, Owlv2ForObjectDetection
# from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
# # Initialization
# load_dotenv()
# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
# PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
# MODEL = "gpt-4o"
# openai = OpenAI()
# # Initialize models
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Owlv2
# owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
# owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# # DINO
# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)
# system_message = """You are an expert in object detection. When users mention:
# 1. "count [object(s)]" - Use detect_objects with proper format based on model
# 2. "detect [object(s)]" - Same as count
# 3. "show [object(s)]" - Same as count
# For DINO model: Format queries as "a [object]." (e.g., "a frog.")
# For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]
# Always use object detection tool when counting/detecting is mentioned."""
# system_message += "Always be accurate. If you don't know the answer, say so."
# class State:
# def __init__(self):
# self.current_image = None
# self.last_prediction = None
# self.current_model = "owlv2" # Default model
# state = State()
# def get_preprocessed_image(pixel_values):
# pixel_values = pixel_values.squeeze().numpy()
# unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
# unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
# unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
# return unnormalized_image
# def encode_image_to_base64(image_array):
# if image_array is None:
# return None
# image = Image.fromarray(image_array)
# buffered = BytesIO()
# image.save(buffered, format="JPEG")
# return base64.b64encode(buffered.getvalue()).decode('utf-8')
# def format_query_for_model(text_input, model_type="owlv2"):
# """Format query based on model requirements"""
# # Extract objects (e.g., "detect a lion" -> "lion")
# text = text_input.lower()
# words = [w.strip('.,?!') for w in text.split()
# if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
# if model_type == "owlv2":
# # Return just the list of queries for Owlv2, not nested list
# queries = ["a photo of " + obj for obj in words]
# print("Owlv2 queries:", queries)
# return queries
# else: # DINO
# # DINO query format
# query = f"a {words[:]}."
# print("DINO query:", query)
# return query
# def detect_objects(query_text):
# if state.current_image is None:
# return {"count": 0, "message": "No image provided"}
# image = Image.fromarray(state.current_image)
# draw = ImageDraw.Draw(image)
# if state.current_model == "owlv2":
# # For Owlv2, pass the text queries directly
# inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
# with torch.no_grad():
# outputs = owlv2_model(**inputs)
# results = owlv2_processor.post_process_object_detection(
# outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
# )
# else: # DINO
# # For DINO, pass the single text query
# inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
# with torch.no_grad():
# outputs = dino_model(**inputs)
# results = dino_processor.post_process_grounded_object_detection(
# outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
# target_sizes=[image.size[::-1]]
# )
# # Draw detection boxes
# boxes = results[0]["boxes"]
# scores = results[0]["scores"]
# for box, score in zip(boxes, scores):
# box = [round(i) for i in box.tolist()]
# draw.rectangle(box, outline="red", width=3)
# draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
# state.last_prediction = np.array(image)
# return {
# "count": len(boxes),
# "confidence": scores.tolist(),
# "message": f"Detected {len(boxes)} objects"
# }
# def identify_plant():
# if state.current_image is None:
# return {"error": "No image provided"}
# image = Image.fromarray(state.current_image)
# img_byte_arr = BytesIO()
# image.save(img_byte_arr, format='JPEG')
# img_byte_arr = img_byte_arr.getvalue()
# api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
# files = [('images', ('image.jpg', img_byte_arr))]
# data = {'organs': ['leaf']}
# try:
# response = requests.post(api_endpoint, files=files, data=data)
# if response.status_code == 200:
# result = response.json()
# best_match = result['results'][0]
# return {
# "scientific_name": best_match['species']['scientificName'],
# "common_names": best_match['species'].get('commonNames', []),
# "family": best_match['species']['family']['scientificName'],
# "genus": best_match['species']['genus']['scientificName'],
# "confidence": f"{best_match['score']*100:.1f}%"
# }
# else:
# return {"error": f"API Error: {response.status_code}"}
# except Exception as e:
# return {"error": f"Error: {str(e)}"}
# # Tool definitions
# object_detection_function = {
# "name": "detect_objects",
# "description": "Use this function to detect and count objects in images based on text queries.",
# "parameters": {
# "type": "object",
# "properties": {
# "query_text": {
# "type": "array",
# "description": "List of text queries describing objects to detect",
# "items": {"type": "string"}
# }
# }
# }
# }
# plant_identification_function = {
# "name": "identify_plant",
# "description": "Use this when asked about plant species identification or botanical classification.",
# "parameters": {
# "type": "object",
# "properties": {},
# "required": []
# }
# }
# tools = [
# {"type": "function", "function": object_detection_function},
# {"type": "function", "function": plant_identification_function}
# ]
# def format_tool_response(tool_response_content):
# data = json.loads(tool_response_content)
# if "error" in data:
# return f"Error: {data['error']}"
# elif "scientific_name" in data:
# return f"""📋 Plant Identification Results:
# 🌿 Scientific Name: {data['scientific_name']}
# 👥 Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
# 👪 Family: {data['family']}
# 🎯 Confidence: {data['confidence']}"""
# else:
# return f"I detected {data['count']} objects in the image."
# def chat(message, image, history):
# if image is not None:
# state.current_image = image
# if state.current_image is None:
# return "Please upload an image first.", None
# base64_image = encode_image_to_base64(state.current_image)
# messages = [{"role": "system", "content": system_message}]
# for human, assistant in history:
# messages.append({"role": "user", "content": human})
# messages.append({"role": "assistant", "content": assistant})
# # Extract objects to detect from user message
# # This could be enhanced with better NLP
# objects_to_detect = message.lower()
# formatted_query = format_query_for_model(objects_to_detect, state.current_model)
# messages.append({
# "role": "user",
# "content": [
# {"type": "text", "text": message},
# {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
# ]
# })
# response = openai.chat.completions.create(
# model=MODEL,
# messages=messages,
# tools=tools,
# max_tokens=300
# )
# if response.choices[0].finish_reason == "tool_calls":
# message = response.choices[0].message
# messages.append(message)
# for tool_call in message.tool_calls:
# if tool_call.function.name == "detect_objects":
# results = detect_objects(formatted_query)
# else:
# results = identify_plant()
# tool_response = {
# "role": "tool",
# "content": json.dumps(results),
# "tool_call_id": tool_call.id
# }
# messages.append(tool_response)
# response = openai.chat.completions.create(
# model=MODEL,
# messages=messages,
# max_tokens=300
# )
# return response.choices[0].message.content, state.last_prediction
# def update_model(choice):
# print(f"Model switched to: {choice}")
# state.current_model = choice.lower()
# return f"Model switched to {choice}"
# # Create Gradio interface
# with gr.Blocks() as demo:
# gr.Markdown("# Object Detection and Plant Analysis System")
# with gr.Row():
# with gr.Column():
# model_choice = gr.Radio(
# choices=["Owlv2", "DINO"],
# value="Owlv2",
# label="Select Detection Model",
# interactive=True
# )
# image_input = gr.Image(type="numpy", label="Upload Image")
# text_input = gr.Textbox(
# label="Ask about the image",
# placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
# )
# with gr.Row():
# submit_btn = gr.Button("Analyze")
# reset_btn = gr.Button("Reset")
# with gr.Column():
# chatbot = gr.Chatbot()
# # output_image = gr.Image(label="Detected Objects")
# output_image = gr.Image(type="numpy", label="Detected Objects")
# def process_interaction(message, image, history):
# response, pred_image = chat(message, image, history)
# history.append((message, response))
# return "", pred_image, history
# def reset_interface():
# state.current_image = None
# state.last_prediction = None
# return None, None, None, []
# model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
# submit_btn.click(
# fn=process_interaction,
# inputs=[text_input, image_input, chatbot],
# outputs=[text_input, output_image, chatbot]
# )
# reset_btn.click(
# fn=reset_interface,
# inputs=[],
# outputs=[image_input, output_image, text_input, chatbot]
# )
# gr.Markdown("""## Instructions
# 1. Select the detection model (Owlv2 or DINO)
# 2. Upload an image
# 3. Ask specific questions about objects or plants
# 4. Click Analyze to get results""")
# demo.launch(share=True)
import os
import re
import io
import uuid
import contextlib
import gradio as gr
from PIL import Image
import shutil
# Required packages:
# pip install vision-agent gradio openai anthropic
from vision_agent.agent import VisionAgentCoderV2
from vision_agent.models import AgentMessage
#############################################
# GLOBAL INITIALIZATION
#############################################
# Create a unique temporary directory for saved images
TEMP_DIR = "temp_images"
if not os.path.exists(TEMP_DIR):
os.makedirs(TEMP_DIR)
# Initialize VisionAgentCoderV2 with verbose logging so the generated code has detailed print outputs.
agent = VisionAgentCoderV2(verbose=True)
#############################################
# UTILITY: SAVE UPLOADED IMAGE TO A TEMP FILE
#############################################
def save_uploaded_image(image):
"""
Saves the uploaded image (a numpy array) to a temporary file.
Returns the filename (including path) to be passed as media to VisionAgent.
"""
# Generate a unique filename
filename = os.path.join(TEMP_DIR, f"{uuid.uuid4().hex}.jpg")
im = Image.fromarray(image)
im.save(filename)
return filename
#############################################
# UTILITY: PARSE FILENAMES FROM save_image(...)
#############################################
def parse_saved_image_filenames(code_str):
"""
Find all filenames in lines that look like:
save_image(..., 'filename.jpg')
Returns a list of the extracted filenames.
"""
pattern = r"save_image\s*\(\s*[^,]+,\s*'([^']+)'\s*\)"
return re.findall(pattern, code_str)
#############################################
# UTILITY: EXECUTE CODE, CAPTURE STDOUT, IDENTIFY IMAGES
#############################################
def run_and_capture_with_images(code_str):
"""
Executes the given code_str, capturing stdout and returning:
- output: a string with all print statements (the step logs)
- existing_images: list of filenames that were saved and exist on disk.
"""
# Parse the code for image filenames saved via save_image
filenames = parse_saved_image_filenames(code_str)
# Capture stdout using a StringIO buffer
buf = io.StringIO()
with contextlib.redirect_stdout(buf):
# IMPORTANT: Here we exec the generated code.
exec(code_str, globals(), locals())
# Gather all printed output
output = buf.getvalue()
# Check which of the parsed filenames exist on disk (prepend TEMP_DIR if needed)
existing_images = []
for fn in filenames:
# If filename is not an absolute path, assume it is in TEMP_DIR
if not os.path.isabs(fn):
fn = os.path.join(TEMP_DIR, fn)
if os.path.exists(fn):
existing_images.append(fn)
return output, existing_images
#############################################
# CHAT FUNCTION: PROCESS USER PROMPT & IMAGE
#############################################
def chat(prompt, image, history):
"""
When the user sends a prompt and optionally an image, do the following:
1. Save the image to a temp file.
2. Use VisionAgentCoderV2 to generate code for the task.
3. Execute the generated code, capturing its stdout logs and any saved image files.
4. Append the logs and image gallery info to the conversation history.
"""
# Validate that an image was provided.
if image is None:
history.append(("System", "Please upload an image."))
return history, None
# Save the uploaded image for use in the generated code.
image_path = save_uploaded_image(image)
# Generate the code with VisionAgent using the user prompt and the image filename.
code_context = agent.generate_code(
[
AgentMessage(
role="user",
content=prompt,
media=[image_path]
)
]
)
# Combine the generated code and its test snippet.
generated_code = code_context.code + "\n" + code_context.test
# Run the generated code and capture output and any saved images.
stdout_text, image_files = run_and_capture_with_images(generated_code)
# Format the response text (the captured logs).
response_text = f"**Execution Logs:**\n{stdout_text}\n"
if image_files:
response_text += "\n**Saved Images:** " + ", ".join(image_files)
else:
response_text += "\nNo images were saved by the generated code."
# Append the prompt and response to the chat history.
history.append((prompt, response_text))
# Optionally, you could clear the image input after use.
return history, image_files
#############################################
# GRADIO CHAT INTERFACE
#############################################
with gr.Blocks() as demo:
gr.Markdown("# VisionAgent Chat App")
gr.Markdown(
"""
This chat app lets you enter a prompt (e.g., "Count the number of cacao oranges in the image")
along with an image. The app then uses VisionAgentCoderV2 to generate multi-step code, executes it,
and returns the detailed logs and any saved images.
"""
)
with gr.Row():
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Chat History")
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="e.g., Count the number of cacao oranges in the image")
submit_btn = gr.Button("Send")
with gr.Column(scale=5):
image_input = gr.Image(label="Upload Image", type="numpy")
gallery = gr.Gallery(label="Generated Images").style(grid=[2], height="auto")
# Clear chat history button
clear_btn = gr.Button("Clear Chat")
# Chat function wrapper (it takes current chat history, prompt, image)
def user_chat_wrapper(prompt, image, history):
history = history or []
history, image_files = chat(prompt, image, history)
return history, image_files
submit_btn.click(fn=user_chat_wrapper, inputs=[prompt_input, image_input, chatbot], outputs=[chatbot, gallery])
clear_btn.click(lambda: ([], None), None, [chatbot, gallery])
demo.launch()