File size: 18,269 Bytes
f8cecaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a1336
2541bac
 
 
 
70a1336
2541bac
 
 
 
 
 
f8cecaf
 
70a1336
2541bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a1336
2541bac
 
 
 
 
70a1336
2541bac
 
 
 
 
 
70a1336
2541bac
 
70a1336
2541bac
 
70a1336
2541bac
 
 
70a1336
 
2541bac
 
 
 
 
 
 
 
70a1336
 
2541bac
 
 
 
 
 
70a1336
2541bac
 
 
 
 
 
 
 
 
 
f8cecaf
2541bac
 
 
 
 
70a1336
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# # imports
# import os
# import json
# import base64
# from io import BytesIO
# from dotenv import load_dotenv
# from openai import OpenAI
# import gradio as gr
# import numpy as np
# from PIL import Image, ImageDraw
# import requests
# import torch
# from transformers import (
#     AutoProcessor, 
#     Owlv2ForObjectDetection,
#     AutoModelForZeroShotObjectDetection
# )
# # from transformers import AutoProcessor, Owlv2ForObjectDetection
# from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD

# # Initialization
# load_dotenv()
# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-here')
# PLANTNET_API_KEY = os.getenv('PLANTNET_API_KEY', 'your-plantnet-key-here')
# MODEL = "gpt-4o"
# openai = OpenAI()

# # Initialize models
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Owlv2
# owlv2_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
# owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
# # DINO
# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)

# system_message = """You are an expert in object detection. When users mention:
# 1. "count [object(s)]" - Use detect_objects with proper format based on model
# 2. "detect [object(s)]" - Same as count
# 3. "show [object(s)]" - Same as count

# For DINO model: Format queries as "a [object]." (e.g., "a frog.")
# For Owlv2 model: Format as [["a photo of [object]", "a photo of [object2]"]]

# Always use object detection tool when counting/detecting is mentioned."""

# system_message += "Always be accurate. If you don't know the answer, say so."


# class State:
#     def __init__(self):
#         self.current_image = None
#         self.last_prediction = None
#         self.current_model = "owlv2"  # Default model

# state = State()

# def get_preprocessed_image(pixel_values):
#     pixel_values = pixel_values.squeeze().numpy()
#     unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
#     unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
#     unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
#     return unnormalized_image

# def encode_image_to_base64(image_array):
#     if image_array is None:
#         return None
#     image = Image.fromarray(image_array)
#     buffered = BytesIO()
#     image.save(buffered, format="JPEG")
#     return base64.b64encode(buffered.getvalue()).decode('utf-8')


# def format_query_for_model(text_input, model_type="owlv2"):
#     """Format query based on model requirements"""
#     # Extract objects (e.g., "detect a lion" -> "lion")
#     text = text_input.lower()
#     words = [w.strip('.,?!') for w in text.split() 
#              if w not in ['count', 'detect', 'show', 'me', 'the', 'and', 'a', 'an']]
    
#     if model_type == "owlv2":
#         # Return just the list of queries for Owlv2, not nested list
#         queries = ["a photo of " + obj for obj in words]
#         print("Owlv2 queries:", queries)
#         return queries
#     else:  # DINO
#         # DINO query format
#         query = f"a {words[:]}."
#         print("DINO query:", query)
#         return query
       

# def detect_objects(query_text):
#     if state.current_image is None:
#         return {"count": 0, "message": "No image provided"}
    
#     image = Image.fromarray(state.current_image)
#     draw = ImageDraw.Draw(image)
    
#     if state.current_model == "owlv2":
#         # For Owlv2, pass the text queries directly
#         inputs = owlv2_processor(text=query_text, images=image, return_tensors="pt").to(device)
#         with torch.no_grad():
#             outputs = owlv2_model(**inputs)
#         results = owlv2_processor.post_process_object_detection(
#             outputs=outputs, threshold=0.2, target_sizes=torch.Tensor([image.size[::-1]])
#         )
#     else:  # DINO
#         # For DINO, pass the single text query
#         inputs = dino_processor(images=image, text=query_text, return_tensors="pt").to(device)
#         with torch.no_grad():
#             outputs = dino_model(**inputs)
#         results = dino_processor.post_process_grounded_object_detection(
#             outputs, inputs.input_ids, box_threshold=0.1, text_threshold=0.3,
#             target_sizes=[image.size[::-1]]
#         )
    
#     # Draw detection boxes
#     boxes = results[0]["boxes"]
#     scores = results[0]["scores"]
    
#     for box, score in zip(boxes, scores):
#         box = [round(i) for i in box.tolist()]
#         draw.rectangle(box, outline="red", width=3)
#         draw.text((box[0], box[1]), f"Score: {score:.2f}", fill="red")
    
#     state.last_prediction = np.array(image)
#     return {
#         "count": len(boxes),
#         "confidence": scores.tolist(),
#         "message": f"Detected {len(boxes)} objects"
#     }

# def identify_plant():
#     if state.current_image is None:
#         return {"error": "No image provided"}
    
#     image = Image.fromarray(state.current_image)
#     img_byte_arr = BytesIO()
#     image.save(img_byte_arr, format='JPEG')
#     img_byte_arr = img_byte_arr.getvalue()
    
#     api_endpoint = f"https://my-api.plantnet.org/v2/identify/all?api-key={PLANTNET_API_KEY}"
#     files = [('images', ('image.jpg', img_byte_arr))]
#     data = {'organs': ['leaf']}
    
#     try:
#         response = requests.post(api_endpoint, files=files, data=data)
#         if response.status_code == 200:
#             result = response.json()
#             best_match = result['results'][0]
#             return {
#                 "scientific_name": best_match['species']['scientificName'],
#                 "common_names": best_match['species'].get('commonNames', []),
#                 "family": best_match['species']['family']['scientificName'],
#                 "genus": best_match['species']['genus']['scientificName'],
#                 "confidence": f"{best_match['score']*100:.1f}%"
#             }
#         else:
#             return {"error": f"API Error: {response.status_code}"}
#     except Exception as e:
#         return {"error": f"Error: {str(e)}"}

# # Tool definitions
# object_detection_function = {
#     "name": "detect_objects",
#     "description": "Use this function to detect and count objects in images based on text queries.",
#     "parameters": {
#         "type": "object",
#         "properties": {
#             "query_text": {
#                 "type": "array",
#                 "description": "List of text queries describing objects to detect",
#                 "items": {"type": "string"}
#             }
#         }
#     }
# }

# plant_identification_function = {
#     "name": "identify_plant",
#     "description": "Use this when asked about plant species identification or botanical classification.",
#     "parameters": {
#         "type": "object",
#         "properties": {},
#         "required": []
#     }
# }

# tools = [
#     {"type": "function", "function": object_detection_function},
#     {"type": "function", "function": plant_identification_function}
# ]

# def format_tool_response(tool_response_content):
#     data = json.loads(tool_response_content)
#     if "error" in data:
#         return f"Error: {data['error']}"
#     elif "scientific_name" in data:
#         return f"""πŸ“‹ Plant Identification Results:
        
# 🌿 Scientific Name: {data['scientific_name']}
# πŸ‘₯ Common Names: {', '.join(data['common_names']) if data['common_names'] else 'Not available'}
# πŸ‘ͺ Family: {data['family']}
# 🎯 Confidence: {data['confidence']}"""
#     else:
#         return f"I detected {data['count']} objects in the image."

# def chat(message, image, history):
#     if image is not None:
#         state.current_image = image
    
#     if state.current_image is None:
#         return "Please upload an image first.", None
    
#     base64_image = encode_image_to_base64(state.current_image)
#     messages = [{"role": "system", "content": system_message}]
    
#     for human, assistant in history:
#         messages.append({"role": "user", "content": human})
#         messages.append({"role": "assistant", "content": assistant})
    
#     # Extract objects to detect from user message
#     # This could be enhanced with better NLP
#     objects_to_detect = message.lower()
#     formatted_query = format_query_for_model(objects_to_detect, state.current_model)
    
#     messages.append({
#         "role": "user",
#         "content": [
#             {"type": "text", "text": message},
#             {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
#         ]
#     })

#     response = openai.chat.completions.create(
#         model=MODEL,
#         messages=messages,
#         tools=tools,
#         max_tokens=300
#     )

#     if response.choices[0].finish_reason == "tool_calls":
#         message = response.choices[0].message
#         messages.append(message)
        
#         for tool_call in message.tool_calls:
#             if tool_call.function.name == "detect_objects":
#                 results = detect_objects(formatted_query)
#             else:
#                 results = identify_plant()
                
#             tool_response = {
#                 "role": "tool",
#                 "content": json.dumps(results),
#                 "tool_call_id": tool_call.id
#             }
#             messages.append(tool_response)

#         response = openai.chat.completions.create(
#             model=MODEL,
#             messages=messages,
#             max_tokens=300
#         )

#     return response.choices[0].message.content, state.last_prediction

# def update_model(choice):
#     print(f"Model switched to: {choice}")
#     state.current_model = choice.lower()
#     return f"Model switched to {choice}"

# # Create Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown("# Object Detection and Plant Analysis System")
    
#     with gr.Row():
#         with gr.Column():
#             model_choice = gr.Radio(
#                 choices=["Owlv2", "DINO"],
#                 value="Owlv2",
#                 label="Select Detection Model",
#                 interactive=True
#             )
#             image_input = gr.Image(type="numpy", label="Upload Image")
#             text_input = gr.Textbox(
#                 label="Ask about the image",
#                 placeholder="e.g., 'What objects do you see?' or 'What species is this plant?'"
#             )
#             with gr.Row():
#                 submit_btn = gr.Button("Analyze")
#                 reset_btn = gr.Button("Reset")
        
#         with gr.Column():
#             chatbot = gr.Chatbot()
#             # output_image = gr.Image(label="Detected Objects")
#             output_image = gr.Image(type="numpy", label="Detected Objects")
    
#     def process_interaction(message, image, history):
#         response, pred_image = chat(message, image, history)
#         history.append((message, response))
#         return "", pred_image, history
    
#     def reset_interface():
#         state.current_image = None
#         state.last_prediction = None
#         return None, None, None, []
    
#     model_choice.change(fn=update_model, inputs=[model_choice], outputs=[gr.Textbox(visible=False)])
    
#     submit_btn.click(
#         fn=process_interaction,
#         inputs=[text_input, image_input, chatbot],
#         outputs=[text_input, output_image, chatbot]
#     )
    
#     reset_btn.click(
#         fn=reset_interface,
#         inputs=[],
#         outputs=[image_input, output_image, text_input, chatbot]
#     )

#     gr.Markdown("""## Instructions
# 1. Select the detection model (Owlv2 or DINO)
# 2. Upload an image
# 3. Ask specific questions about objects or plants
# 4. Click Analyze to get results""")

# demo.launch(share=True)

import os
import re
import io
import uuid
import contextlib
import gradio as gr
from PIL import Image
import shutil

# Required packages:
# pip install vision-agent gradio openai anthropic

from vision_agent.agent import VisionAgentCoderV2
from vision_agent.models import AgentMessage

#############################################
# GLOBAL INITIALIZATION
#############################################

# Create a unique temporary directory for saved images
TEMP_DIR = "temp_images"
if not os.path.exists(TEMP_DIR):
    os.makedirs(TEMP_DIR)

# Initialize VisionAgentCoderV2 with verbose logging so the generated code has detailed print outputs.
agent = VisionAgentCoderV2(verbose=True)

#############################################
# UTILITY: SAVE UPLOADED IMAGE TO A TEMP FILE
#############################################

def save_uploaded_image(image):
    """
    Saves the uploaded image (a numpy array) to a temporary file.
    Returns the filename (including path) to be passed as media to VisionAgent.
    """
    # Generate a unique filename
    filename = os.path.join(TEMP_DIR, f"{uuid.uuid4().hex}.jpg")
    im = Image.fromarray(image)
    im.save(filename)
    return filename

#############################################
# UTILITY: PARSE FILENAMES FROM save_image(...)
#############################################

def parse_saved_image_filenames(code_str):
    """
    Find all filenames in lines that look like:
        save_image(..., 'filename.jpg')
    Returns a list of the extracted filenames.
    """
    pattern = r"save_image\s*\(\s*[^,]+,\s*'([^']+)'\s*\)"
    return re.findall(pattern, code_str)

#############################################
# UTILITY: EXECUTE CODE, CAPTURE STDOUT, IDENTIFY IMAGES
#############################################

def run_and_capture_with_images(code_str):
    """
    Executes the given code_str, capturing stdout and returning:
      - output: a string with all print statements (the step logs)
      - existing_images: list of filenames that were saved and exist on disk.
    """
    # Parse the code for image filenames saved via save_image
    filenames = parse_saved_image_filenames(code_str)
    
    # Capture stdout using a StringIO buffer
    buf = io.StringIO()
    with contextlib.redirect_stdout(buf):
        # IMPORTANT: Here we exec the generated code.
        exec(code_str, globals(), locals())
    
    # Gather all printed output
    output = buf.getvalue()
    
    # Check which of the parsed filenames exist on disk (prepend TEMP_DIR if needed)
    existing_images = []
    for fn in filenames:
        # If filename is not an absolute path, assume it is in TEMP_DIR
        if not os.path.isabs(fn):
            fn = os.path.join(TEMP_DIR, fn)
        if os.path.exists(fn):
            existing_images.append(fn)
    return output, existing_images

#############################################
# CHAT FUNCTION: PROCESS USER PROMPT & IMAGE
#############################################

def chat(prompt, image, history):
    """
    When the user sends a prompt and optionally an image, do the following:
    1. Save the image to a temp file.
    2. Use VisionAgentCoderV2 to generate code for the task.
    3. Execute the generated code, capturing its stdout logs and any saved image files.
    4. Append the logs and image gallery info to the conversation history.
    """
    # Validate that an image was provided.
    if image is None:
        history.append(("System", "Please upload an image."))
        return history, None
    
    # Save the uploaded image for use in the generated code.
    image_path = save_uploaded_image(image)
    
    # Generate the code with VisionAgent using the user prompt and the image filename.
    code_context = agent.generate_code(
        [
            AgentMessage(
                role="user",
                content=prompt,
                media=[image_path]
            )
        ]
    )
    
    # Combine the generated code and its test snippet.
    generated_code = code_context.code + "\n" + code_context.test

    # Run the generated code and capture output and any saved images.
    stdout_text, image_files = run_and_capture_with_images(generated_code)
    
    # Format the response text (the captured logs).
    response_text = f"**Execution Logs:**\n{stdout_text}\n"
    if image_files:
        response_text += "\n**Saved Images:** " + ", ".join(image_files)
    else:
        response_text += "\nNo images were saved by the generated code."
    
    # Append the prompt and response to the chat history.
    history.append((prompt, response_text))
    
    # Optionally, you could clear the image input after use.
    return history, image_files

#############################################
# GRADIO CHAT INTERFACE
#############################################

with gr.Blocks() as demo:
    gr.Markdown("# VisionAgent Chat App")
    gr.Markdown(
        """
        This chat app lets you enter a prompt (e.g., "Count the number of cacao oranges in the image")
        along with an image. The app then uses VisionAgentCoderV2 to generate multi-step code, executes it,
        and returns the detailed logs and any saved images.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Chat History")
            prompt_input = gr.Textbox(label="Enter Prompt", placeholder="e.g., Count the number of cacao oranges in the image")
            submit_btn = gr.Button("Send")
        with gr.Column(scale=5):
            image_input = gr.Image(label="Upload Image", type="numpy")
    
    gallery = gr.Gallery(label="Generated Images").style(grid=[2], height="auto")
    
    # Clear chat history button
    clear_btn = gr.Button("Clear Chat")
    
    # Chat function wrapper (it takes current chat history, prompt, image)
    def user_chat_wrapper(prompt, image, history):
        history = history or []
        history, image_files = chat(prompt, image, history)
        return history, image_files

    submit_btn.click(fn=user_chat_wrapper, inputs=[prompt_input, image_input, chatbot], outputs=[chatbot, gallery])
    
    clear_btn.click(lambda: ([], None), None, [chatbot, gallery])
    
    demo.launch()