Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2024 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Evaluates the predictions from a MetricX model.""" | |
import dataclasses | |
import json | |
import os | |
from typing import Any, Tuple | |
from mt_metrics_eval import data | |
from mt_metrics_eval import stats | |
from mt_metrics_eval import tau_optimization | |
import numpy as np | |
import scipy.stats | |
import transformers | |
class Arguments: | |
dataset: str = dataclasses.field(metadata={"help": "The MTME dataset."}) | |
lp: str = dataclasses.field(metadata={"help": "The language pair."}) | |
input_file: str = dataclasses.field(metadata={"help": "The input file."}) | |
output_file: str = dataclasses.field( | |
metadata={"help": "The output file with evaluation metrics."}, | |
) | |
def _convert_to_matrices( | |
instances: list[dict[str, Any]] | |
) -> Tuple[np.ndarray, np.ndarray]: | |
"""Converts the instances to metric and human score matrices.""" | |
system_id_to_row = {} | |
segment_id_to_col = {} | |
for instance in instances: | |
system_id = instance["system_id"] | |
segment_id = instance["segment_id"] | |
if system_id not in system_id_to_row: | |
system_id_to_row[system_id] = len(system_id_to_row) | |
if segment_id not in segment_id_to_col: | |
segment_id_to_col[segment_id] = len(segment_id_to_col) | |
num_rows = len(system_id_to_row) | |
num_cols = len(segment_id_to_col) | |
# MTME requires that missing scores must be None, not NaN. | |
metric_scores = np.full((num_rows, num_cols), None, dtype=np.dtype(object)) | |
human_scores = np.full((num_rows, num_cols), None, dtype=np.dtype(object)) | |
for instance in instances: | |
system_id = instance["system_id"] | |
segment_id = instance["segment_id"] | |
row = system_id_to_row[system_id] | |
col = segment_id_to_col[segment_id] | |
metric_scores[row, col] = ( | |
-1 * instance["prediction"] | |
) # negate so higher is better | |
human_scores[row, col] = instance["label"] | |
return metric_scores, human_scores | |
def main() -> None: | |
parser = transformers.HfArgumentParser(Arguments) | |
(args,) = parser.parse_args_into_dataclasses() | |
# Download MTME data | |
data.Download() | |
# Load the data and filter outliers, the human system corresponding to the | |
# references, and any system that doesn't have any MQM scores. | |
evs = data.EvalSet(args.dataset, args.lp) | |
bad_systems = {evs.std_ref} | evs.outlier_sys_names | |
mqm = evs.Scores("seg", "mqm") | |
for system_id, scores in mqm.items(): | |
if not any(score is not None for score in scores): | |
bad_systems.add(system_id) | |
instances = [] | |
with open(args.input_file, "r") as f: | |
for line in f: | |
instance = json.loads(line) | |
if instance["system_id"] in bad_systems: | |
continue | |
instances.append(instance) | |
metric_seg_scores, human_seg_scores = _convert_to_matrices(instances) | |
metric_sys_scores = np.mean(metric_seg_scores, axis=1) | |
human_sys_scores = np.apply_along_axis( | |
lambda row: np.mean(row[row != None]), 1, human_seg_scores # pylint: disable=singleton-comparison | |
) | |
# Segment-level correlations. | |
mask = human_seg_scores.reshape(-1) != None # pylint: disable=singleton-comparison | |
seg_no_grouping_pearson, _ = scipy.stats.pearsonr( | |
metric_seg_scores.reshape(-1)[mask], | |
human_seg_scores.reshape(-1)[mask], | |
) | |
tie_calib_result = tau_optimization.tau_optimization( | |
metric_seg_scores.T, | |
human_seg_scores.T, | |
tau_optimization.TauSufficientStats.acc_23, | |
) | |
# System-level correlations. | |
sys_pearson, _ = scipy.stats.pearsonr(human_sys_scores, metric_sys_scores) | |
agree, num_pairs = stats.Agreement(human_sys_scores, metric_sys_scores) | |
sys_accuracy = agree / num_pairs | |
sys_spa = stats.PairwiseConfidenceError( | |
human_seg_scores.reshape(-1), | |
metric_seg_scores.reshape(-1), | |
human_seg_scores.shape[0], | |
filter_nones=True, | |
)[0] | |
metrics = { | |
"system_level": { | |
"pearson": sys_pearson, | |
"accuracy": sys_accuracy, | |
"spa": sys_spa, | |
}, | |
"segment_level_no_grouping": { | |
"pearson": seg_no_grouping_pearson, | |
}, | |
"segment_level_group_by_item": { | |
"accuracy": tie_calib_result.best_tau, | |
"epsilon": tie_calib_result.best_threshold, | |
}, | |
} | |
print(json.dumps(metrics, indent=2)) | |
if args.output_file: | |
dirname = os.path.dirname(args.output_file) | |
if dirname: | |
os.makedirs(dirname, exist_ok=True) | |
with open(args.output_file, "w") as out: | |
out.write(json.dumps(metrics)) | |
if __name__ == "__main__": | |
main() | |