File size: 5,017 Bytes
dd05f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluates the predictions from a MetricX model."""

import dataclasses
import json
import os
from typing import Any, Tuple

from mt_metrics_eval import data
from mt_metrics_eval import stats
from mt_metrics_eval import tau_optimization
import numpy as np
import scipy.stats
import transformers


@dataclasses.dataclass
class Arguments:
  dataset: str = dataclasses.field(metadata={"help": "The MTME dataset."})

  lp: str = dataclasses.field(metadata={"help": "The language pair."})

  input_file: str = dataclasses.field(metadata={"help": "The input file."})

  output_file: str = dataclasses.field(
      metadata={"help": "The output file with evaluation metrics."},
  )


def _convert_to_matrices(
    instances: list[dict[str, Any]]
) -> Tuple[np.ndarray, np.ndarray]:
  """Converts the instances to metric and human score matrices."""
  system_id_to_row = {}
  segment_id_to_col = {}

  for instance in instances:
    system_id = instance["system_id"]
    segment_id = instance["segment_id"]
    if system_id not in system_id_to_row:
      system_id_to_row[system_id] = len(system_id_to_row)
    if segment_id not in segment_id_to_col:
      segment_id_to_col[segment_id] = len(segment_id_to_col)

  num_rows = len(system_id_to_row)
  num_cols = len(segment_id_to_col)
  # MTME requires that missing scores must be None, not NaN.
  metric_scores = np.full((num_rows, num_cols), None, dtype=np.dtype(object))
  human_scores = np.full((num_rows, num_cols), None, dtype=np.dtype(object))

  for instance in instances:
    system_id = instance["system_id"]
    segment_id = instance["segment_id"]
    row = system_id_to_row[system_id]
    col = segment_id_to_col[segment_id]
    metric_scores[row, col] = (
        -1 * instance["prediction"]
    )  # negate so higher is better
    human_scores[row, col] = instance["label"]

  return metric_scores, human_scores


def main() -> None:
  parser = transformers.HfArgumentParser(Arguments)
  (args,) = parser.parse_args_into_dataclasses()

  # Download MTME data
  data.Download()

  # Load the data and filter outliers, the human system corresponding to the
  # references, and any system that doesn't have any MQM scores.
  evs = data.EvalSet(args.dataset, args.lp)
  bad_systems = {evs.std_ref} | evs.outlier_sys_names
  mqm = evs.Scores("seg", "mqm")
  for system_id, scores in mqm.items():
    if not any(score is not None for score in scores):
      bad_systems.add(system_id)

  instances = []
  with open(args.input_file, "r") as f:
    for line in f:
      instance = json.loads(line)
      if instance["system_id"] in bad_systems:
        continue
      instances.append(instance)

  metric_seg_scores, human_seg_scores = _convert_to_matrices(instances)
  metric_sys_scores = np.mean(metric_seg_scores, axis=1)
  human_sys_scores = np.apply_along_axis(
      lambda row: np.mean(row[row != None]), 1, human_seg_scores  # pylint: disable=singleton-comparison
  )

  # Segment-level correlations.
  mask = human_seg_scores.reshape(-1) != None  # pylint: disable=singleton-comparison
  seg_no_grouping_pearson, _ = scipy.stats.pearsonr(
      metric_seg_scores.reshape(-1)[mask],
      human_seg_scores.reshape(-1)[mask],
  )
  tie_calib_result = tau_optimization.tau_optimization(
      metric_seg_scores.T,
      human_seg_scores.T,
      tau_optimization.TauSufficientStats.acc_23,
  )

  # System-level correlations.
  sys_pearson, _ = scipy.stats.pearsonr(human_sys_scores, metric_sys_scores)
  agree, num_pairs = stats.Agreement(human_sys_scores, metric_sys_scores)
  sys_accuracy = agree / num_pairs
  sys_spa = stats.PairwiseConfidenceError(
      human_seg_scores.reshape(-1),
      metric_seg_scores.reshape(-1),
      human_seg_scores.shape[0],
      filter_nones=True,
  )[0]

  metrics = {
      "system_level": {
          "pearson": sys_pearson,
          "accuracy": sys_accuracy,
          "spa": sys_spa,
      },
      "segment_level_no_grouping": {
          "pearson": seg_no_grouping_pearson,
      },
      "segment_level_group_by_item": {
          "accuracy": tie_calib_result.best_tau,
          "epsilon": tie_calib_result.best_threshold,
      },
  }
  print(json.dumps(metrics, indent=2))

  if args.output_file:
    dirname = os.path.dirname(args.output_file)
    if dirname:
      os.makedirs(dirname, exist_ok=True)
    with open(args.output_file, "w") as out:
      out.write(json.dumps(metrics))


if __name__ == "__main__":
  main()