KuangDW
add laser tool
2aebc50
# This file was automatically generated by SWIG (https://www.swig.org).
# Version 4.1.0
#
# Do not make changes to this file unless you know what you are doing - modify
# the SWIG interface file instead.
from sys import version_info as _swig_python_version_info
# Import the low-level C/C++ module
if __package__ or "." in __name__:
from . import _sentencepiece
else:
import _sentencepiece
try:
import builtins as __builtin__
except ImportError:
import __builtin__
def _swig_repr(self):
try:
strthis = "proxy of " + self.this.__repr__()
except __builtin__.Exception:
strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
def _swig_setattr_nondynamic_instance_variable(set):
def set_instance_attr(self, name, value):
if name == "this":
set(self, name, value)
elif name == "thisown":
self.this.own(value)
elif hasattr(self, name) and isinstance(getattr(type(self), name), property):
set(self, name, value)
else:
raise AttributeError("You cannot add instance attributes to %s" % self)
return set_instance_attr
def _swig_setattr_nondynamic_class_variable(set):
def set_class_attr(cls, name, value):
if hasattr(cls, name) and not isinstance(getattr(cls, name), property):
set(cls, name, value)
else:
raise AttributeError("You cannot add class attributes to %s" % cls)
return set_class_attr
def _swig_add_metaclass(metaclass):
"""Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
def wrapper(cls):
return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
return wrapper
class _SwigNonDynamicMeta(type):
"""Meta class to enforce nondynamic attributes (no new attributes) for a class"""
__setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__)
class ImmutableSentencePieceText_ImmutableSentencePiece(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
__repr__ = _swig_repr
def __init__(self):
_sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText_ImmutableSentencePiece())
__swig_destroy__ = _sentencepiece.delete_ImmutableSentencePieceText_ImmutableSentencePiece
def _piece(self):
return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece(self)
def _surface(self):
return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface(self)
def _id(self):
return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__id(self)
def _begin(self):
return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__begin(self)
def _end(self):
return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__end(self)
def _surface_as_bytes(self):
return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface_as_bytes(self)
def _piece_as_bytes(self):
return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece_as_bytes(self)
piece = property(_piece)
piece_as_bytes = property(_piece_as_bytes)
surface = property(_surface)
surface_as_bytes = property(_surface_as_bytes)
id = property(_id)
begin = property(_begin)
end = property(_end)
def __str__(self):
return ('piece: \"{}\"\n'
'id: {}\n'
'surface: \"{}\"\n'
'begin: {}\n'
'end: {}\n').format(self.piece, self.id, self.surface,
self.begin, self.end)
def __eq__(self, other):
return self.piece == other.piece and self.id == other.id and self.surface == other.surface and self.begin == other.begin and self.end == other.end
def __hash__(self):
return hash(str(self))
__repr__ = __str__
# Register ImmutableSentencePieceText_ImmutableSentencePiece in _sentencepiece:
_sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece_swigregister(ImmutableSentencePieceText_ImmutableSentencePiece)
class ImmutableSentencePieceText(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
__repr__ = _swig_repr
def __init__(self):
_sentencepiece.ImmutableSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText())
__swig_destroy__ = _sentencepiece.delete_ImmutableSentencePieceText
def _pieces_size(self):
return _sentencepiece.ImmutableSentencePieceText__pieces_size(self)
def _pieces(self, index):
return _sentencepiece.ImmutableSentencePieceText__pieces(self, index)
def _text(self):
return _sentencepiece.ImmutableSentencePieceText__text(self)
def _score(self):
return _sentencepiece.ImmutableSentencePieceText__score(self)
def SerializeAsString(self):
return _sentencepiece.ImmutableSentencePieceText_SerializeAsString(self)
def _text_as_bytes(self):
return _sentencepiece.ImmutableSentencePieceText__text_as_bytes(self)
text = property(_text)
text_as_bytes = property(_text_as_bytes)
score = property(_score)
class ImmutableSentencePieceIterator:
def __init__(self, proto):
self.proto = proto
self.len = self.proto._pieces_size()
def __len__(self):
return self.len
def __getitem__(self, index):
if isinstance(index, slice):
return [self.proto._pieces(i) for i in range(self.len)][index.start:index.stop:index.step]
if index < 0:
index = index + self.len
if index < 0 or index >= self.len:
raise IndexError('piece index is out of range')
return self.proto._pieces(index)
def __str__(self):
return '\n'.join(['pieces {{\n{}}}'.format(str(x)) for x in self])
__repr__ = __str__
@property
def pieces(self):
return ImmutableSentencePieceText.ImmutableSentencePieceIterator(self)
def __eq__(self, other):
return self.SerializeAsString() == other.SerializeAsString()
def __hash__(self):
return hash(self.SerializeAsString())
def __str__(self):
return ('text: \"{}\"\n'
'score: {}\n'
'{}').format(self.text, self.score,
'\n'.join(['pieces {{\n{}}}'.format(str(x)) for x in self.pieces]))
__repr__ = __str__
# Register ImmutableSentencePieceText in _sentencepiece:
_sentencepiece.ImmutableSentencePieceText_swigregister(ImmutableSentencePieceText)
class ImmutableNBestSentencePieceText(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
__repr__ = _swig_repr
def __init__(self):
_sentencepiece.ImmutableNBestSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableNBestSentencePieceText())
__swig_destroy__ = _sentencepiece.delete_ImmutableNBestSentencePieceText
def _nbests_size(self):
return _sentencepiece.ImmutableNBestSentencePieceText__nbests_size(self)
def _nbests(self, index):
return _sentencepiece.ImmutableNBestSentencePieceText__nbests(self, index)
def SerializeAsString(self):
return _sentencepiece.ImmutableNBestSentencePieceText_SerializeAsString(self)
class ImmutableSentencePieceTextIterator:
def __init__(self, proto):
self.proto = proto
self.len = self.proto._nbests_size()
def __len__(self):
return self.len
def __getitem__(self, index):
if isinstance(index, slice):
return [self.proto._nbests(i) for i in range(self.len)][index.start:index.stop:index.step]
if index < 0:
index = index + self.len
if index < 0 or index >= self.len:
raise IndexError('nbests index is out of range')
return self.proto._nbests(index)
def __str__(self):
return '\n'.join(['nbests {{\n{}}}'.format(str(x)) for x in self])
__repr__ = __str__
@property
def nbests(self):
return ImmutableNBestSentencePieceText.ImmutableSentencePieceTextIterator(self)
def __eq__(self, other):
return self.SerializeAsString() == other.SerializeAsString()
def __hash__(self):
return hash(self.SerializeAsString())
def __str__(self):
return '\n'.join(['nbests {{\n{}}}'.format(str(x)) for x in self.nbests])
__repr__ = __str__
# Register ImmutableNBestSentencePieceText in _sentencepiece:
_sentencepiece.ImmutableNBestSentencePieceText_swigregister(ImmutableNBestSentencePieceText)
class SentencePieceProcessor(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
__repr__ = _swig_repr
def __init__(self):
_sentencepiece.SentencePieceProcessor_swiginit(self, _sentencepiece.new_SentencePieceProcessor())
__swig_destroy__ = _sentencepiece.delete_SentencePieceProcessor
def LoadFromSerializedProto(self, serialized):
return _sentencepiece.SentencePieceProcessor_LoadFromSerializedProto(self, serialized)
def SetEncodeExtraOptions(self, extra_option):
return _sentencepiece.SentencePieceProcessor_SetEncodeExtraOptions(self, extra_option)
def SetDecodeExtraOptions(self, extra_option):
return _sentencepiece.SentencePieceProcessor_SetDecodeExtraOptions(self, extra_option)
def SetVocabulary(self, valid_vocab):
return _sentencepiece.SentencePieceProcessor_SetVocabulary(self, valid_vocab)
def ResetVocabulary(self):
return _sentencepiece.SentencePieceProcessor_ResetVocabulary(self)
def LoadVocabulary(self, filename, threshold):
return _sentencepiece.SentencePieceProcessor_LoadVocabulary(self, filename, threshold)
def CalculateEntropy(self, *args):
return _sentencepiece.SentencePieceProcessor_CalculateEntropy(self, *args)
def GetPieceSize(self):
return _sentencepiece.SentencePieceProcessor_GetPieceSize(self)
def PieceToId(self, piece):
return _sentencepiece.SentencePieceProcessor_PieceToId(self, piece)
def IdToPiece(self, id):
return _sentencepiece.SentencePieceProcessor_IdToPiece(self, id)
def GetScore(self, id):
return _sentencepiece.SentencePieceProcessor_GetScore(self, id)
def IsUnknown(self, id):
return _sentencepiece.SentencePieceProcessor_IsUnknown(self, id)
def IsControl(self, id):
return _sentencepiece.SentencePieceProcessor_IsControl(self, id)
def IsUnused(self, id):
return _sentencepiece.SentencePieceProcessor_IsUnused(self, id)
def IsByte(self, id):
return _sentencepiece.SentencePieceProcessor_IsByte(self, id)
def unk_id(self):
return _sentencepiece.SentencePieceProcessor_unk_id(self)
def bos_id(self):
return _sentencepiece.SentencePieceProcessor_bos_id(self)
def eos_id(self):
return _sentencepiece.SentencePieceProcessor_eos_id(self)
def pad_id(self):
return _sentencepiece.SentencePieceProcessor_pad_id(self)
def serialized_model_proto(self):
return _sentencepiece.SentencePieceProcessor_serialized_model_proto(self)
def LoadFromFile(self, arg):
return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
def _EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
def _DecodeIds(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIds(self, ids)
def _DecodeIdsAsBytes(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytes(self, ids)
def _DecodePieces(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePieces(self, pieces)
def _DecodeIdsAsSerializedProto(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProto(self, ids)
def _DecodePiecesAsSerializedProto(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProto(self, pieces)
def _DecodeIdsAsImmutableProto(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProto(self, ids)
def _DecodePiecesAsImmutableProto(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProto(self, pieces)
def _DecodeIdsBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsBatch(self, ins, num_threads)
def _DecodeIdsAsBytesBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytesBatch(self, ins, num_threads)
def _DecodeIdsAsSerializedProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProtoBatch(self, ins, num_threads)
def _DecodeIdsAsImmutableProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProtoBatch(self, ins, num_threads)
def _DecodePiecesBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesBatch(self, ins, num_threads)
def _DecodePiecesAsSerializedProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProtoBatch(self, ins, num_threads)
def _DecodePiecesAsImmutableProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProtoBatch(self, ins, num_threads)
def _NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
def _NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
def _NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
def _NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
def _SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
def _SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
def _SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
def _SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
def _Normalize(self, text):
return _sentencepiece.SentencePieceProcessor__Normalize(self, text)
def _NormalizeWithOffsets(self, text):
return _sentencepiece.SentencePieceProcessor__NormalizeWithOffsets(self, text)
def _CalculateEntropy(self, text, alpha):
return _sentencepiece.SentencePieceProcessor__CalculateEntropy(self, text, alpha)
def _CalculateEntropyBatch(self, ins, alpha, num_threads):
return _sentencepiece.SentencePieceProcessor__CalculateEntropyBatch(self, ins, alpha, num_threads)
def _OverrideNormalizerSpec(self, args):
return _sentencepiece.SentencePieceProcessor__OverrideNormalizerSpec(self, args)
def Init(self,
model_file=None,
model_proto=None,
out_type=int,
add_bos=False,
add_eos=False,
reverse=False,
emit_unk_piece=False,
enable_sampling=False,
nbest_size=-1,
alpha=0.1,
num_threads=-1):
"""Initialzie sentencepieceProcessor.
Args:
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto.
out_type: output type. int or str.
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after
reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout.
nbest_size = {0,1}: No sampling is performed.
nbest_size > 1: samples from the nbest_size results.
nbest_size < 0: assuming that nbest_size is infinite and samples
from the all hypothesis (lattice) using
forward-filtering-and-backward-sampling algorithm.
alpha: Soothing parameter for unigram sampling, and dropout probability of
merge operations for BPE-dropout.
num_threads: number of threads in batch processing (Default = -1, auto-detected)
"""
_sentencepiece_processor_init_native(self)
self._out_type = out_type
self._add_bos = add_bos
self._add_eos = add_eos
self._reverse = reverse
self._emit_unk_piece = emit_unk_piece
self._enable_sampling = enable_sampling
self._nbest_size = nbest_size
self._alpha = alpha
self._num_threads = num_threads
if model_file or model_proto:
self.Load(model_file=model_file, model_proto=model_proto)
def Encode(self,
input,
out_type=None,
add_bos=None,
add_eos=None,
reverse=None,
emit_unk_piece=None,
enable_sampling=None,
nbest_size=None,
alpha=None,
num_threads=None):
"""Encode text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str.
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after
reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout.
nbest_size = {0,1}: No sampling is performed.
nbest_size > 1: samples from the nbest_size results.
nbest_size < 0: assuming that nbest_size is infinite and samples
from the all hypothesis (lattice) using
forward-filtering-and-backward-sampling algorithm.
alpha: Soothing parameter for unigram sampling, and merge probability for
BPE-dropout (probablity 'p' in BPE-dropout paper).
num_threads: the number of threads used in the batch processing (Default = -1).
"""
if out_type is None:
out_type = self._out_type
if add_bos is None:
add_bos = self._add_bos
if add_eos is None:
add_eos = self._add_eos
if reverse is None:
reverse = self._reverse
if emit_unk_piece is None:
emit_unk_piece = self._emit_unk_piece
if enable_sampling is None:
enable_sampling = self._enable_sampling
if nbest_size is None:
nbest_size = self._nbest_size
if alpha is None:
alpha = self._alpha
if num_threads is None:
num_threads = self._num_threads
if enable_sampling == True and (nbest_size is None or nbest_size == 0 or
nbest_size == 1 or alpha is None):
raise RuntimeError(
'When enable_sampling is True, We must specify "nbest_size > 1" or "nbest_size = -1", '
'and "alpha". "nbest_size" is enabled only on unigram mode ignored in BPE-dropout. '
'when "nbest_size = -1" , this method samples from all candidates on the lattice '
'instead of nbest segmentations.'
)
if num_threads is None or type(num_threads) is not int:
raise RuntimeError('num_threads must be int')
if type(input) is list:
if out_type is int:
return self._EncodeAsIdsBatch(input, num_threads, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._EncodeAsPiecesBatch(input, num_threads, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._EncodeAsSerializedProtoBatch(input, num_threads, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._EncodeAsImmutableProtoBatch(input, num_threads, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
if out_type is int:
return self._EncodeAsIds(input, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._EncodeAsPieces(input, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._EncodeAsSerializedProto(input, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._EncodeAsImmutableProto(input, enable_sampling, nbest_size,
alpha, add_bos, add_eos, reverse, emit_unk_piece)
raise RuntimeError('unknown out_type={}'.format(out_type))
return None
def EncodeAsPieces(self, input, **kwargs):
return self.Encode(input=input, out_type=str, **kwargs)
def EncodeAsIds(self, input, **kwargs):
return self.Encode(input=input, out_type=int, **kwargs)
def EncodeAsSerializedProto(self, input, **kwargs):
return self.Encode(input=input, out_type='serialized_proto', **kwargs)
def EncodeAsImmutableProto(self, input, **kwargs):
return self.Encode(input=input, out_type='immutable_proto', **kwargs)
def SampleEncodeAsPieces(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type=str, enable_sampling=True, **kwargs)
def SampleEncodeAsIds(self, input, nbest_size=None, alpha=None,**kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type=int, enable_sampling=True, **kwargs)
def SampleEncodeAsSerializedProto(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type='serialized_proto', enable_sampling=True, **kwargs)
def SampleEncodeAsImmutableProto(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type='immutable_proto', enable_sampling=True, **kwargs)
def NBestEncode(self,
input,
out_type=None,
add_bos=None,
add_eos=None,
reverse=None,
emit_unk_piece=None,
nbest_size=None):
"""NBestEncode text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str.
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
nbest_size: nbest size
"""
if out_type is None:
out_type = self._out_type
if add_bos is None:
add_bos = self._add_bos
if add_eos is None:
add_eos = self._add_eos
if reverse is None:
reverse = self._reverse
if emit_unk_piece is None:
emit_unk_piece = self._emit_unk_piece
if nbest_size is None:
nbest_size = self._nbest_size
if nbest_size <= 0:
nbest_size=1
def _encode(text):
if out_type is int:
return self._NBestEncodeAsIds(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._NBestEncodeAsPieces(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._NBestEncodeAsSerializedProto(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._NBestEncodeAsImmutableProto(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
raise RuntimeError('unknown out_type')
if type(input) is list:
return [_encode(n) for n in input]
return _encode(input)
def NBestEncodeAsPieces(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type=str, **kwargs)
def NBestEncodeAsIds(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type=int, **kwargs)
def NBestEncodeAsSerializedProto(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type='serialized_proto', **kwargs)
def NBestEncodeAsImmutableProto(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type='immutable_proto', **kwargs)
def SampleEncodeAndScore(self,
input,
out_type=None,
add_bos=None,
add_eos=None,
reverse=None,
emit_unk_piece=None,
num_samples=None,
alpha=None,
wor=None,
include_best=None):
"""SampleEncodeAndScore text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str or 'serialized_proto' or 'immutable_proto'
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
num_samples: How many samples to return (Default = 1)
alpha: inverse temperature for sampling
wor: whether to sample without replacement (Default = false)
include_best: whether to include the best tokenization, requires wor=True (Default = false)
"""
if out_type is None:
out_type = self._out_type
if add_bos is None:
add_bos = self._add_bos
if add_eos is None:
add_eos = self._add_eos
if reverse is None:
reverse = self._reverse
if emit_unk_piece is None:
emit_unk_piece = self._emit_unk_piece
if num_samples is None:
num_samples = 1
if alpha is None:
alpha = 1.
if wor is None:
wor = False
if include_best is None:
include_best = False
if num_samples <= 0:
raise RuntimeError('num_examples must be positive')
if include_best and not wor:
raise RuntimeError('When include_best is True, We must specify "wor = True".')
def _encode(text):
if out_type is int:
return self._SampleEncodeAndScoreAsIds(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._SampleEncodeAndScoreAsPieces(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._SampleEncodeAndScoreAsSerializedProto(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._SampleEncodeAndScoreAsImmutableProto(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
raise RuntimeError('unknown output type')
if type(input) is list:
return [_encode(n) for n in input]
return _encode(input)
def SampleEncodeAndScoreAsPieces(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type=str, **kwargs)
def SampleEncodeAndScoreAsIds(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type=int, **kwargs)
def SampleEncodeAndScoreAsSerializedProto(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type='serialized_proto', **kwargs)
def SampleEncodeAndScoreAsImmutableProto(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type='immutable_proto', **kwargs)
def Decode(self, input, out_type=str, num_threads=None):
"""Decode processed id or token sequences.
Args:
out_type: output type. str, bytes or 'serialized_proto' or 'immutable_proto' (Default = str)
num_threads: the number of threads used in the batch processing (Default = -1).
"""
if num_threads is None:
num_threads = self._num_threads
if num_threads is None or type(num_threads) is not int:
raise RuntimeError('num_threads must be int')
if not input:
return ''
if out_type is str:
if type(input) is int:
return self._DecodeIds([input])
if type(input) is str:
return self._DecodePieces([input])
if type(input) is list:
if len(input) == 0 or type(input[0]) is int:
return self._DecodeIds(input)
if type(input[0]) is str:
return self._DecodePieces(input)
if type(input[0]) is list:
if len(input[0]) == 0 or type(input[0][0]) is int:
return self._DecodeIdsBatch(input, num_threads)
if type(input[0][0]) is str:
return self._DecodePiecesBatch(input, num_threads)
if out_type is bytes:
if type(input) is int:
return self._DecodeIdsAsBytes([input])
if type(input) is str:
return self._DecodePieces([input])
if type(input) is list:
if len(input) == 0 or type(input[0]) is int:
return self._DecodeIdsAsBytes(input)
if type(input[0]) is str:
return self._DecodePieces(input)
if type(input[0]) is list:
if len(input[0]) == 0 or type(input[0][0]) is int:
return self._DecodeIdsAsBytesBatch(input, num_threads)
if type(input[0][0]) is str:
return self._DecodePiecesBatch(input, num_threads)
if out_type == 'serialized_proto':
if type(input) is int:
return self._DecodeIdsAsSerializedProto([input])
if type(input) is str:
return self._DecodePiecesAsSerializedProto([input])
if type(input) is list:
if len(input) == 0 or type(input[0]) is int:
return self._DecodeIdsAsSerializedProto(input)
if type(input[0]) is str:
return self._DecodePiecesAsSerializedProto(input)
if type(input[0]) is list:
if len(input[0]) == 0 or type(input[0][0]) is int:
return self._DecodeIdsAsSerializedProtoBatch(input, num_threads)
if type(input[0][0]) is str:
return self._DecodePiecesAsSerializedProtoBatch(input, num_threads)
if out_type == 'immutable_proto':
if type(input) is int:
return self._DecodeIdsAsImmutableProto([input])
if type(input) is str:
return self._DecodePiecesAsImmutableProto([input])
if type(input) is list:
if len(input) == 0 or type(input[0]) is int:
return self._DecodeIdsAsImmutableProto(input)
if type(input[0]) is str:
return self._DecodePiecesAsImmutableProto(input)
if type(input[0]) is list:
if len(input[0]) == 0 or type(input[0][0]) is int:
return self._DecodeIdsAsImmutableProtoBatch(input, num_threads)
if type(input[0][0]) is str:
return self._DecodePiecesAsImmutableProtoBatch(input, num_threads)
raise RuntimeError('unknown output or input type')
return None
def DecodePieces(self, input, out_type=str, **kwargs):
return self.Decode(input=input, out_type=out_type, **kwargs)
def DecodeIds(self, input, out_type=str, **kwargs):
return self.Decode(input=input, out_type=out_type, **kwargs)
def DecodePiecesAsSerializedProto(self, input, out_type='serialized_proto', **kwargs):
return self.Decode(input=input, out_type=out_type, **kwargs)
def DecodeIdsAsSerializedProto(self, input, out_type='serialized_proto', **kwargs):
return self.Decode(input=input, out_type=out_type, **kwargs)
def DecodePiecesAsImmutableProto(self, input, out_type='immutable_proto', **kwargs):
return self.Decode(input=input, out_type=out_type, **kwargs)
def DecodeIdsAsImmutableProto(self, input, out_type='immutable_proto', **kwargs):
return self.Decode(input=input, out_type=out_type, **kwargs)
def CalculateEntropy(self, input, alpha, num_threads=None):
"""Calculate sentence entropy"""
if type(input) is list:
if num_threads is None:
num_threads = self._num_threads
if num_threads is None or type(num_threads) is not int:
raise RuntimeError('num_threads must be int')
return self._CalculateEntropyBatch(input, alpha, num_threads)
return self._CalculateEntropy(input, alpha)
def Normalize(self, input, with_offsets=None):
def _normalize(text):
if with_offsets:
return self._NormalizeWithOffsets(text)
return self._Normalize(text)
if type(input) is list:
return [_normalize(x) for x in input]
return _normalize(input)
def OverrideNormalizerSpec(self, **kwargs):
new_kwargs = {}
for key, value in kwargs.items():
new_kwargs[key] = str(value)
return self._OverrideNormalizerSpec(new_kwargs)
def piece_size(self):
return self.GetPieceSize()
def vocab_size(self):
return self.GetPieceSize()
def __getstate__(self):
return self.serialized_model_proto()
def __setstate__(self, serialized_model_proto):
self.__init__()
self.LoadFromSerializedProto(serialized_model_proto)
def __len__(self):
return self.GetPieceSize()
def __getitem__(self, piece):
return self.PieceToId(piece)
def Load(self, model_file=None, model_proto=None):
"""Overwride SentencePieceProcessor.Load to support both model_file and model_proto.
Args:
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto. Either `model_file`
or `model_proto` must be set.
"""
if model_file and model_proto:
raise RuntimeError('model_file and model_proto must be exclusive.')
if model_proto:
return self.LoadFromSerializedProto(model_proto)
return self.LoadFromFile(model_file)
# Register SentencePieceProcessor in _sentencepiece:
_sentencepiece.SentencePieceProcessor_swigregister(SentencePieceProcessor)
def SetRandomGeneratorSeed(seed):
return _sentencepiece.SetRandomGeneratorSeed(seed)
def SetMinLogLevel(v):
return _sentencepiece.SetMinLogLevel(v)
class SentencePieceTrainer(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined")
__repr__ = _swig_repr
@staticmethod
def _TrainFromString(arg):
return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
@staticmethod
def _TrainFromMap(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap(args)
@staticmethod
def _TrainFromMap2(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap2(args, iter)
@staticmethod
def _TrainFromMap3(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap3(args)
@staticmethod
def _TrainFromMap4(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap4(args, iter)
@staticmethod
def _Train(arg=None, **kwargs):
"""Train Sentencepiece model. Accept both kwargs and legacy string arg."""
if arg is not None and type(arg) is str:
return SentencePieceTrainer._TrainFromString(arg)
def _encode(value):
"""Encode value to CSV.."""
if type(value) is list:
if sys.version_info[0] == 3:
f = StringIO()
else:
f = BytesIO()
writer = csv.writer(f, lineterminator='')
writer.writerow([str(v) for v in value])
return f.getvalue()
else:
return str(value)
sentence_iterator = None
model_writer = None
new_kwargs = {}
for key, value in kwargs.items():
if key in ['sentence_iterator', 'sentence_reader']:
sentence_iterator = value
elif key in ['model_writer']:
model_writer = value
else:
new_kwargs[key] = _encode(value)
if model_writer:
if sentence_iterator:
model_proto = SentencePieceTrainer._TrainFromMap4(new_kwargs,
sentence_iterator)
else:
model_proto = SentencePieceTrainer._TrainFromMap3(new_kwargs)
model_writer.write(model_proto)
else:
if sentence_iterator:
return SentencePieceTrainer._TrainFromMap2(new_kwargs, sentence_iterator)
else:
return SentencePieceTrainer._TrainFromMap(new_kwargs)
return None
@staticmethod
def Train(arg=None, logstream=None, **kwargs):
with _LogStream(ostream=logstream):
SentencePieceTrainer._Train(arg=arg, **kwargs)
# Register SentencePieceTrainer in _sentencepiece:
_sentencepiece.SentencePieceTrainer_swigregister(SentencePieceTrainer)
class SentencePieceNormalizer(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
__repr__ = _swig_repr
def __init__(self):
_sentencepiece.SentencePieceNormalizer_swiginit(self, _sentencepiece.new_SentencePieceNormalizer())
__swig_destroy__ = _sentencepiece.delete_SentencePieceNormalizer
def LoadFromSerializedProto(self, serialized):
return _sentencepiece.SentencePieceNormalizer_LoadFromSerializedProto(self, serialized)
def LoadFromRuleTSV(self, filename):
return _sentencepiece.SentencePieceNormalizer_LoadFromRuleTSV(self, filename)
def LoadFromRuleName(self, name):
return _sentencepiece.SentencePieceNormalizer_LoadFromRuleName(self, name)
def serialized_model_proto(self):
return _sentencepiece.SentencePieceNormalizer_serialized_model_proto(self)
def LoadFromFile(self, arg):
return _sentencepiece.SentencePieceNormalizer_LoadFromFile(self, arg)
def _Normalize(self, text):
return _sentencepiece.SentencePieceNormalizer__Normalize(self, text)
def _NormalizeWithOffsets(self, text):
return _sentencepiece.SentencePieceNormalizer__NormalizeWithOffsets(self, text)
def _SetProtoField(self, name, value):
return _sentencepiece.SentencePieceNormalizer__SetProtoField(self, name, value)
def Init(self,
model_file=None,
model_proto=None,
rule_tsv=None,
rule_name=None,
add_dummy_prefix=False,
escape_whitespaces=False,
remove_extra_whitespaces=False):
"""Initialzie sentencePieceNormalizer.
Args:
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto.
rule_tsv: The normalization rule file in TSV format.
rule_name: Pre-defined normalization name.
add_dummy_prefix: add dummy prefix.
escape_whitespaces: escape whitespaces.
remove_extra_whitespaces: remove extra whitespaces.
"""
_sentencepiece_normalizer_init_native(self)
if model_file:
status = self.LoadFromFile(model_file)
elif model_proto:
status = self.LoadFromSerializedProto(model_proto)
elif rule_tsv:
status = self.LoadFromRuleTSV(rule_tsv)
elif rule_name:
status = self.LoadFromRuleName(rule_name)
else:
raise RuntimeError('no model is specified')
if status:
self._SetProtoField('add_dummy_prefix', add_dummy_prefix)
self._SetProtoField('escape_whitespaces', escape_whitespaces)
self._SetProtoField('remove_extra_whitespaces', remove_extra_whitespaces)
def Normalize(self, input, with_offsets=None):
def _normalize(text):
if with_offsets:
return self._NormalizeWithOffsets(text)
return self._Normalize(text)
if type(input) is list:
return [_normalize(x) for x in input]
return _normalize(input)
def __getstate__(self):
return self.serialized_model_proto()
def __setstate__(self, serialized_model_proto):
self.__init__()
self.LoadFromSerializedProto(serialized_model_proto)
# Register SentencePieceNormalizer in _sentencepiece:
_sentencepiece.SentencePieceNormalizer_swigregister(SentencePieceNormalizer)
import re
import csv
import sys
import os
from io import StringIO
from io import BytesIO
def _add_snake_case(classname):
"""Added snake_cased method from CammelCased method."""
snake_map = {}
for k, v in classname.__dict__.items():
if re.match(r'^[A-Z]+', k):
snake = re.sub(r'(?<!^)(?=[A-Z])', '_',
k).lower().replace('n_best', 'nbest')
snake_map[snake] = v
for k, v in snake_map.items():
setattr(classname, k, v)
def _batchnize(classname, name):
"""Enables batch request for the method classname.name."""
func = getattr(classname, name, None)
def _func(v, n):
if type(n) is int and (n < 0 or n >= v.piece_size()):
raise IndexError('piece id is out of range.')
return func(v, n)
def _batched_func(self, arg):
if type(arg) is list:
return [_func(self, n) for n in arg]
else:
return _func(self, arg)
setattr(classname, name, _batched_func)
_sentencepiece_processor_init_native = SentencePieceProcessor.__init__
_sentencepiece_normalizer_init_native = SentencePieceNormalizer.__init__
setattr(SentencePieceProcessor, '__init__', SentencePieceProcessor.Init)
setattr(SentencePieceNormalizer, '__init__', SentencePieceNormalizer.Init)
SentencePieceProcessor.Tokenize = SentencePieceProcessor.Encode
SentencePieceProcessor.Detokenize = SentencePieceProcessor.Decode
for m in [
'PieceToId', 'IdToPiece', 'GetScore', 'IsUnknown', 'IsControl', 'IsUnused',
'IsByte'
]:
_batchnize(SentencePieceProcessor, m)
_add_snake_case(SentencePieceProcessor)
_add_snake_case(SentencePieceTrainer)
_add_snake_case(SentencePieceNormalizer)
set_random_generator_seed = SetRandomGeneratorSeed
set_min_log_level = SetMinLogLevel
from ._version import __version__
class _LogStream(object):
def __init__(self, ostream=None):
self.ostream = ostream
if self.ostream is not None:
self.orig_stream_fileno = sys.stderr.fileno()
def __enter__(self):
if self.ostream is not None:
self.orig_stream_dup = os.dup(self.orig_stream_fileno)
os.dup2(self.ostream.fileno(), self.orig_stream_fileno)
def __exit__(self, type, value, traceback):
if self.ostream is not None:
os.close(self.orig_stream_fileno)
os.dup2(self.orig_stream_dup, self.orig_stream_fileno)
os.close(self.orig_stream_dup)
self.ostream.close()