File size: 49,230 Bytes
2aebc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
# This file was automatically generated by SWIG (https://www.swig.org).
# Version 4.1.0
#
# Do not make changes to this file unless you know what you are doing - modify
# the SWIG interface file instead.

from sys import version_info as _swig_python_version_info
# Import the low-level C/C++ module
if __package__ or "." in __name__:
    from . import _sentencepiece
else:
    import _sentencepiece

try:
    import builtins as __builtin__
except ImportError:
    import __builtin__

def _swig_repr(self):
    try:
        strthis = "proxy of " + self.this.__repr__()
    except __builtin__.Exception:
        strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)


def _swig_setattr_nondynamic_instance_variable(set):
    def set_instance_attr(self, name, value):
        if name == "this":
            set(self, name, value)
        elif name == "thisown":
            self.this.own(value)
        elif hasattr(self, name) and isinstance(getattr(type(self), name), property):
            set(self, name, value)
        else:
            raise AttributeError("You cannot add instance attributes to %s" % self)
    return set_instance_attr


def _swig_setattr_nondynamic_class_variable(set):
    def set_class_attr(cls, name, value):
        if hasattr(cls, name) and not isinstance(getattr(cls, name), property):
            set(cls, name, value)
        else:
            raise AttributeError("You cannot add class attributes to %s" % cls)
    return set_class_attr


def _swig_add_metaclass(metaclass):
    """Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
    def wrapper(cls):
        return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
    return wrapper


class _SwigNonDynamicMeta(type):
    """Meta class to enforce nondynamic attributes (no new attributes) for a class"""
    __setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__)


class ImmutableSentencePieceText_ImmutableSentencePiece(object):
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr

    def __init__(self):
        _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText_ImmutableSentencePiece())
    __swig_destroy__ = _sentencepiece.delete_ImmutableSentencePieceText_ImmutableSentencePiece

    def _piece(self):
        return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece(self)

    def _surface(self):
        return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface(self)

    def _id(self):
        return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__id(self)

    def _begin(self):
        return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__begin(self)

    def _end(self):
        return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__end(self)

    def _surface_as_bytes(self):
        return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__surface_as_bytes(self)

    def _piece_as_bytes(self):
        return _sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece__piece_as_bytes(self)

    piece = property(_piece)
    piece_as_bytes = property(_piece_as_bytes)
    surface = property(_surface)
    surface_as_bytes = property(_surface_as_bytes)
    id = property(_id)
    begin = property(_begin)
    end = property(_end)

    def __str__(self):
      return ('piece: \"{}\"\n'
              'id: {}\n'
              'surface: \"{}\"\n'
              'begin: {}\n'
              'end: {}\n').format(self.piece, self.id, self.surface,
                                  self.begin, self.end)

    def __eq__(self, other):
      return self.piece == other.piece and self.id == other.id and self.surface == other.surface and self.begin == other.begin and self.end == other.end

    def __hash__(self):
      return hash(str(self))

    __repr__ = __str__


# Register ImmutableSentencePieceText_ImmutableSentencePiece in _sentencepiece:
_sentencepiece.ImmutableSentencePieceText_ImmutableSentencePiece_swigregister(ImmutableSentencePieceText_ImmutableSentencePiece)
class ImmutableSentencePieceText(object):
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr

    def __init__(self):
        _sentencepiece.ImmutableSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableSentencePieceText())
    __swig_destroy__ = _sentencepiece.delete_ImmutableSentencePieceText

    def _pieces_size(self):
        return _sentencepiece.ImmutableSentencePieceText__pieces_size(self)

    def _pieces(self, index):
        return _sentencepiece.ImmutableSentencePieceText__pieces(self, index)

    def _text(self):
        return _sentencepiece.ImmutableSentencePieceText__text(self)

    def _score(self):
        return _sentencepiece.ImmutableSentencePieceText__score(self)

    def SerializeAsString(self):
        return _sentencepiece.ImmutableSentencePieceText_SerializeAsString(self)

    def _text_as_bytes(self):
        return _sentencepiece.ImmutableSentencePieceText__text_as_bytes(self)

    text = property(_text)
    text_as_bytes = property(_text_as_bytes)
    score = property(_score)

    class ImmutableSentencePieceIterator:
      def __init__(self, proto):
        self.proto = proto
        self.len = self.proto._pieces_size()

      def __len__(self):
        return self.len

      def __getitem__(self, index):
        if isinstance(index, slice):
          return [self.proto._pieces(i) for i in range(self.len)][index.start:index.stop:index.step]
        if index < 0:
          index = index + self.len
        if index < 0 or index >= self.len:
          raise IndexError('piece index is out of range')
        return self.proto._pieces(index)

      def __str__(self):
        return '\n'.join(['pieces {{\n{}}}'.format(str(x)) for x in self])

      __repr__ = __str__

    @property
    def pieces(self):
      return ImmutableSentencePieceText.ImmutableSentencePieceIterator(self)

    def __eq__(self, other):
      return self.SerializeAsString() == other.SerializeAsString()

    def __hash__(self):
      return hash(self.SerializeAsString())

    def __str__(self):
      return ('text: \"{}\"\n'
              'score: {}\n'
              '{}').format(self.text, self.score,
                           '\n'.join(['pieces {{\n{}}}'.format(str(x)) for x in self.pieces]))

    __repr__ = __str__


# Register ImmutableSentencePieceText in _sentencepiece:
_sentencepiece.ImmutableSentencePieceText_swigregister(ImmutableSentencePieceText)
class ImmutableNBestSentencePieceText(object):
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr

    def __init__(self):
        _sentencepiece.ImmutableNBestSentencePieceText_swiginit(self, _sentencepiece.new_ImmutableNBestSentencePieceText())
    __swig_destroy__ = _sentencepiece.delete_ImmutableNBestSentencePieceText

    def _nbests_size(self):
        return _sentencepiece.ImmutableNBestSentencePieceText__nbests_size(self)

    def _nbests(self, index):
        return _sentencepiece.ImmutableNBestSentencePieceText__nbests(self, index)

    def SerializeAsString(self):
        return _sentencepiece.ImmutableNBestSentencePieceText_SerializeAsString(self)

    class ImmutableSentencePieceTextIterator:
      def __init__(self, proto):
        self.proto = proto
        self.len = self.proto._nbests_size()

      def __len__(self):
        return self.len

      def __getitem__(self, index):
        if isinstance(index, slice):
          return [self.proto._nbests(i) for i in range(self.len)][index.start:index.stop:index.step]
        if index < 0:
          index = index + self.len
        if index < 0 or index >= self.len:
          raise IndexError('nbests index is out of range')
        return self.proto._nbests(index)

      def __str__(self):
        return '\n'.join(['nbests {{\n{}}}'.format(str(x)) for x in self])

      __repr__ = __str__

    @property
    def nbests(self):
      return ImmutableNBestSentencePieceText.ImmutableSentencePieceTextIterator(self)

    def __eq__(self, other):
      return self.SerializeAsString() == other.SerializeAsString()

    def __hash__(self):
      return hash(self.SerializeAsString())

    def __str__(self):
      return '\n'.join(['nbests {{\n{}}}'.format(str(x)) for x in self.nbests])

    __repr__ = __str__


# Register ImmutableNBestSentencePieceText in _sentencepiece:
_sentencepiece.ImmutableNBestSentencePieceText_swigregister(ImmutableNBestSentencePieceText)
class SentencePieceProcessor(object):
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr

    def __init__(self):
        _sentencepiece.SentencePieceProcessor_swiginit(self, _sentencepiece.new_SentencePieceProcessor())
    __swig_destroy__ = _sentencepiece.delete_SentencePieceProcessor

    def LoadFromSerializedProto(self, serialized):
        return _sentencepiece.SentencePieceProcessor_LoadFromSerializedProto(self, serialized)

    def SetEncodeExtraOptions(self, extra_option):
        return _sentencepiece.SentencePieceProcessor_SetEncodeExtraOptions(self, extra_option)

    def SetDecodeExtraOptions(self, extra_option):
        return _sentencepiece.SentencePieceProcessor_SetDecodeExtraOptions(self, extra_option)

    def SetVocabulary(self, valid_vocab):
        return _sentencepiece.SentencePieceProcessor_SetVocabulary(self, valid_vocab)

    def ResetVocabulary(self):
        return _sentencepiece.SentencePieceProcessor_ResetVocabulary(self)

    def LoadVocabulary(self, filename, threshold):
        return _sentencepiece.SentencePieceProcessor_LoadVocabulary(self, filename, threshold)

    def CalculateEntropy(self, *args):
        return _sentencepiece.SentencePieceProcessor_CalculateEntropy(self, *args)

    def GetPieceSize(self):
        return _sentencepiece.SentencePieceProcessor_GetPieceSize(self)

    def PieceToId(self, piece):
        return _sentencepiece.SentencePieceProcessor_PieceToId(self, piece)

    def IdToPiece(self, id):
        return _sentencepiece.SentencePieceProcessor_IdToPiece(self, id)

    def GetScore(self, id):
        return _sentencepiece.SentencePieceProcessor_GetScore(self, id)

    def IsUnknown(self, id):
        return _sentencepiece.SentencePieceProcessor_IsUnknown(self, id)

    def IsControl(self, id):
        return _sentencepiece.SentencePieceProcessor_IsControl(self, id)

    def IsUnused(self, id):
        return _sentencepiece.SentencePieceProcessor_IsUnused(self, id)

    def IsByte(self, id):
        return _sentencepiece.SentencePieceProcessor_IsByte(self, id)

    def unk_id(self):
        return _sentencepiece.SentencePieceProcessor_unk_id(self)

    def bos_id(self):
        return _sentencepiece.SentencePieceProcessor_bos_id(self)

    def eos_id(self):
        return _sentencepiece.SentencePieceProcessor_eos_id(self)

    def pad_id(self):
        return _sentencepiece.SentencePieceProcessor_pad_id(self)

    def serialized_model_proto(self):
        return _sentencepiece.SentencePieceProcessor_serialized_model_proto(self)

    def LoadFromFile(self, arg):
        return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)

    def _EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)

    def _DecodeIds(self, ids):
        return _sentencepiece.SentencePieceProcessor__DecodeIds(self, ids)

    def _DecodeIdsAsBytes(self, ids):
        return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytes(self, ids)

    def _DecodePieces(self, pieces):
        return _sentencepiece.SentencePieceProcessor__DecodePieces(self, pieces)

    def _DecodeIdsAsSerializedProto(self, ids):
        return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProto(self, ids)

    def _DecodePiecesAsSerializedProto(self, pieces):
        return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProto(self, pieces)

    def _DecodeIdsAsImmutableProto(self, ids):
        return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProto(self, ids)

    def _DecodePiecesAsImmutableProto(self, pieces):
        return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProto(self, pieces)

    def _DecodeIdsBatch(self, ins, num_threads):
        return _sentencepiece.SentencePieceProcessor__DecodeIdsBatch(self, ins, num_threads)

    def _DecodeIdsAsBytesBatch(self, ins, num_threads):
        return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytesBatch(self, ins, num_threads)

    def _DecodeIdsAsSerializedProtoBatch(self, ins, num_threads):
        return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProtoBatch(self, ins, num_threads)

    def _DecodeIdsAsImmutableProtoBatch(self, ins, num_threads):
        return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProtoBatch(self, ins, num_threads)

    def _DecodePiecesBatch(self, ins, num_threads):
        return _sentencepiece.SentencePieceProcessor__DecodePiecesBatch(self, ins, num_threads)

    def _DecodePiecesAsSerializedProtoBatch(self, ins, num_threads):
        return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProtoBatch(self, ins, num_threads)

    def _DecodePiecesAsImmutableProtoBatch(self, ins, num_threads):
        return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProtoBatch(self, ins, num_threads)

    def _NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)

    def _NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)

    def _NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)

    def _NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)

    def _SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)

    def _SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)

    def _SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)

    def _SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
        return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)

    def _Normalize(self, text):
        return _sentencepiece.SentencePieceProcessor__Normalize(self, text)

    def _NormalizeWithOffsets(self, text):
        return _sentencepiece.SentencePieceProcessor__NormalizeWithOffsets(self, text)

    def _CalculateEntropy(self, text, alpha):
        return _sentencepiece.SentencePieceProcessor__CalculateEntropy(self, text, alpha)

    def _CalculateEntropyBatch(self, ins, alpha, num_threads):
        return _sentencepiece.SentencePieceProcessor__CalculateEntropyBatch(self, ins, alpha, num_threads)

    def _OverrideNormalizerSpec(self, args):
        return _sentencepiece.SentencePieceProcessor__OverrideNormalizerSpec(self, args)

    def Init(self,
             model_file=None,
             model_proto=None,
             out_type=int,
             add_bos=False,
             add_eos=False,
             reverse=False,
             emit_unk_piece=False,
             enable_sampling=False,
             nbest_size=-1,
             alpha=0.1,
             num_threads=-1):
      """Initialzie sentencepieceProcessor.

      Args:
        model_file: The sentencepiece model file path.
        model_proto: The sentencepiece model serialized proto.
        out_type: output type. int or str.
        add_bos: Add <s> to the result (Default = false)
        add_eos: Add </s> to the result (Default = false) <s>/</s> is added after
          reversing (if enabled).
        reverse: Reverses the tokenized sequence (Default = false)
        emit_unk_piece: Emits the unk literal string (Default = false)
        nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout.
                    nbest_size = {0,1}: No sampling is performed.
                    nbest_size > 1: samples from the nbest_size results.
                    nbest_size < 0: assuming that nbest_size is infinite and samples
                      from the all hypothesis (lattice) using
                      forward-filtering-and-backward-sampling algorithm.
        alpha: Soothing parameter for unigram sampling, and dropout probability of
               merge operations for BPE-dropout.
        num_threads: number of threads in batch processing (Default = -1, auto-detected)
      """

      _sentencepiece_processor_init_native(self)
      self._out_type = out_type
      self._add_bos = add_bos
      self._add_eos = add_eos
      self._reverse = reverse
      self._emit_unk_piece = emit_unk_piece
      self._enable_sampling = enable_sampling
      self._nbest_size = nbest_size
      self._alpha = alpha
      self._num_threads = num_threads
      if model_file or model_proto:
        self.Load(model_file=model_file, model_proto=model_proto)


    def Encode(self,
               input,
               out_type=None,
               add_bos=None,
               add_eos=None,
               reverse=None,
               emit_unk_piece=None,
               enable_sampling=None,
               nbest_size=None,
               alpha=None,
               num_threads=None):
      """Encode text input to segmented ids or tokens.

        Args:
        input: input string. accepsts list of string.
        out_type: output type. int or str.
        add_bos: Add <s> to the result (Default = false)
        add_eos: Add </s> to the result (Default = false) <s>/</s> is added after
                 reversing (if enabled).
        reverse: Reverses the tokenized sequence (Default = false)
        emit_unk_piece: Emits the unk literal string (Default = false)
        nbest_size: sampling parameters for unigram. Invalid in BPE-Dropout.
                    nbest_size = {0,1}: No sampling is performed.
                    nbest_size > 1: samples from the nbest_size results.
                    nbest_size < 0: assuming that nbest_size is infinite and samples
                    from the all hypothesis (lattice) using
                    forward-filtering-and-backward-sampling algorithm.
        alpha: Soothing parameter for unigram sampling, and merge probability for
               BPE-dropout (probablity 'p' in BPE-dropout paper).
        num_threads: the number of threads used in the batch processing (Default = -1).
      """

      if out_type is None:
        out_type = self._out_type
      if add_bos is None:
        add_bos = self._add_bos
      if add_eos is None:
        add_eos = self._add_eos
      if reverse is None:
        reverse = self._reverse
      if emit_unk_piece is None:
        emit_unk_piece = self._emit_unk_piece
      if enable_sampling is None:
        enable_sampling = self._enable_sampling
      if nbest_size is None:
        nbest_size = self._nbest_size
      if alpha is None:
        alpha = self._alpha
      if num_threads is None:
        num_threads = self._num_threads

      if enable_sampling == True and (nbest_size is None or nbest_size == 0 or
                                      nbest_size == 1 or alpha is None):
        raise RuntimeError(
            'When enable_sampling is True, We must specify "nbest_size > 1" or "nbest_size = -1", '
            'and "alpha". "nbest_size" is enabled only on unigram mode ignored in BPE-dropout. '
            'when "nbest_size = -1" , this method samples from all candidates on the lattice '
            'instead of nbest segmentations.'
        )

      if num_threads is None or type(num_threads) is not int:
        raise RuntimeError('num_threads must be int')

      if type(input) is list:
        if out_type is int:
          return self._EncodeAsIdsBatch(input, num_threads, enable_sampling, nbest_size,
                                        alpha, add_bos, add_eos, reverse, emit_unk_piece)
        if out_type is str:
          return self._EncodeAsPiecesBatch(input, num_threads, enable_sampling, nbest_size,
                                           alpha, add_bos, add_eos, reverse, emit_unk_piece)
        if out_type == 'serialized_proto' or out_type == 'proto':
          return self._EncodeAsSerializedProtoBatch(input, num_threads, enable_sampling, nbest_size,
                                                    alpha, add_bos, add_eos, reverse, emit_unk_piece)
        if out_type == 'immutable_proto':
          return self._EncodeAsImmutableProtoBatch(input, num_threads, enable_sampling, nbest_size,
                                                   alpha, add_bos, add_eos, reverse, emit_unk_piece)

      if out_type is int:
        return self._EncodeAsIds(input, enable_sampling, nbest_size,
                                 alpha, add_bos, add_eos, reverse, emit_unk_piece)
      if out_type is str:
        return self._EncodeAsPieces(input, enable_sampling, nbest_size,
                                    alpha, add_bos, add_eos, reverse, emit_unk_piece)
      if out_type == 'serialized_proto' or out_type == 'proto':
        return self._EncodeAsSerializedProto(input, enable_sampling, nbest_size,
                                             alpha, add_bos, add_eos, reverse, emit_unk_piece)
      if out_type == 'immutable_proto':
        return self._EncodeAsImmutableProto(input, enable_sampling, nbest_size,
                                            alpha, add_bos, add_eos, reverse, emit_unk_piece)

      raise RuntimeError('unknown out_type={}'.format(out_type))
      return None


    def EncodeAsPieces(self, input, **kwargs):
      return self.Encode(input=input, out_type=str, **kwargs)


    def EncodeAsIds(self, input, **kwargs):
      return self.Encode(input=input, out_type=int, **kwargs)


    def EncodeAsSerializedProto(self, input, **kwargs):
      return self.Encode(input=input, out_type='serialized_proto', **kwargs)


    def EncodeAsImmutableProto(self, input, **kwargs):
      return self.Encode(input=input, out_type='immutable_proto', **kwargs)


    def SampleEncodeAsPieces(self, input, nbest_size=None, alpha=None, **kwargs):
      return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
                         out_type=str, enable_sampling=True, **kwargs)


    def SampleEncodeAsIds(self, input, nbest_size=None, alpha=None,**kwargs):
      return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
                         out_type=int, enable_sampling=True, **kwargs)


    def SampleEncodeAsSerializedProto(self, input, nbest_size=None, alpha=None, **kwargs):
      return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
                         out_type='serialized_proto', enable_sampling=True, **kwargs)


    def SampleEncodeAsImmutableProto(self, input, nbest_size=None, alpha=None, **kwargs):
      return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
                         out_type='immutable_proto', enable_sampling=True, **kwargs)


    def NBestEncode(self,
                    input,
                    out_type=None,
                    add_bos=None,
                    add_eos=None,
                    reverse=None,
                    emit_unk_piece=None,
                    nbest_size=None):
      """NBestEncode text input to segmented ids or tokens.

        Args:
        input: input string. accepsts list of string.
        out_type: output type. int or str.
        add_bos: Add <s> to the result (Default = false)
        add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
        reverse: Reverses the tokenized sequence (Default = false)
        emit_unk_piece: Emits the unk literal string (Default = false)
        nbest_size: nbest size
      """

      if out_type is None:
        out_type = self._out_type
      if add_bos is None:
        add_bos = self._add_bos
      if add_eos is None:
        add_eos = self._add_eos
      if reverse is None:
        reverse = self._reverse
      if emit_unk_piece is None:
        emit_unk_piece = self._emit_unk_piece
      if nbest_size is None:
        nbest_size = self._nbest_size

      if nbest_size <= 0:
        nbest_size=1

      def _encode(text):
        if out_type is int:
          return self._NBestEncodeAsIds(text, nbest_size,
                                        add_bos, add_eos, reverse, emit_unk_piece)
        if out_type is str:
          return self._NBestEncodeAsPieces(text, nbest_size,
                                           add_bos, add_eos, reverse, emit_unk_piece)
        if out_type == 'serialized_proto' or out_type == 'proto':
          return self._NBestEncodeAsSerializedProto(text, nbest_size,
                                                    add_bos, add_eos, reverse, emit_unk_piece)
        if out_type == 'immutable_proto':
          return self._NBestEncodeAsImmutableProto(text, nbest_size,
                                                   add_bos, add_eos, reverse, emit_unk_piece)

        raise RuntimeError('unknown out_type')

      if type(input) is list:
        return [_encode(n) for n in input]

      return _encode(input)


    def NBestEncodeAsPieces(self, input, nbest_size=None, **kwargs):
      return self.NBestEncode(input=input, nbest_size=nbest_size,
                              out_type=str, **kwargs)


    def NBestEncodeAsIds(self, input, nbest_size=None, **kwargs):
      return self.NBestEncode(input=input, nbest_size=nbest_size,
                              out_type=int, **kwargs)


    def NBestEncodeAsSerializedProto(self, input, nbest_size=None, **kwargs):
      return self.NBestEncode(input=input, nbest_size=nbest_size,
                              out_type='serialized_proto', **kwargs)


    def NBestEncodeAsImmutableProto(self, input, nbest_size=None, **kwargs):
      return self.NBestEncode(input=input, nbest_size=nbest_size,
                              out_type='immutable_proto', **kwargs)


    def SampleEncodeAndScore(self,
                             input,
                             out_type=None,
                             add_bos=None,
                             add_eos=None,
                             reverse=None,
                             emit_unk_piece=None,
                             num_samples=None,
                             alpha=None,
                             wor=None,
                             include_best=None):
      """SampleEncodeAndScore text input to segmented ids or tokens.

        Args:
        input: input string. accepsts list of string.
        out_type: output type. int or str or 'serialized_proto' or 'immutable_proto'
        add_bos: Add <s> to the result (Default = false)
        add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
        reverse: Reverses the tokenized sequence (Default = false)
        emit_unk_piece: Emits the unk literal string (Default = false)
        num_samples: How many samples to return (Default = 1)
        alpha: inverse temperature for sampling
        wor: whether to sample without replacement (Default = false)
        include_best: whether to include the best tokenization, requires wor=True (Default = false)
      """

      if out_type is None:
        out_type = self._out_type
      if add_bos is None:
        add_bos = self._add_bos
      if add_eos is None:
        add_eos = self._add_eos
      if reverse is None:
        reverse = self._reverse
      if emit_unk_piece is None:
        emit_unk_piece = self._emit_unk_piece
      if num_samples is None:
        num_samples = 1
      if alpha is None:
        alpha = 1.
      if wor is None:
        wor = False
      if include_best is None:
        include_best = False

      if num_samples <= 0:
        raise RuntimeError('num_examples must be positive')

      if include_best and not wor:
        raise RuntimeError('When include_best is True, We must specify "wor = True".')


      def _encode(text):
        if out_type is int:
          return self._SampleEncodeAndScoreAsIds(text, num_samples, alpha, wor, include_best,
                                                 add_bos, add_eos, reverse, emit_unk_piece)
        if out_type is str:
          return self._SampleEncodeAndScoreAsPieces(text, num_samples, alpha, wor, include_best,
                                                    add_bos, add_eos, reverse, emit_unk_piece)

        if out_type == 'serialized_proto' or out_type == 'proto':
          return self._SampleEncodeAndScoreAsSerializedProto(text, num_samples, alpha, wor, include_best,
                                                             add_bos, add_eos, reverse, emit_unk_piece)

        if out_type == 'immutable_proto':
          return self._SampleEncodeAndScoreAsImmutableProto(text, num_samples, alpha, wor, include_best,
                                                            add_bos, add_eos, reverse, emit_unk_piece)

        raise RuntimeError('unknown output type')


      if type(input) is list:
        return [_encode(n) for n in input]

      return _encode(input)


    def SampleEncodeAndScoreAsPieces(self, input, num_samples=None, alpha=None, **kwargs):
      return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
                                       out_type=str, **kwargs)


    def SampleEncodeAndScoreAsIds(self, input, num_samples=None, alpha=None, **kwargs):
      return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
                                       out_type=int, **kwargs)


    def SampleEncodeAndScoreAsSerializedProto(self, input, num_samples=None, alpha=None, **kwargs):
      return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
                                       out_type='serialized_proto', **kwargs)


    def SampleEncodeAndScoreAsImmutableProto(self, input, num_samples=None, alpha=None, **kwargs):
      return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
                                       out_type='immutable_proto', **kwargs)


    def Decode(self, input, out_type=str, num_threads=None):
      """Decode processed id or token sequences.

      Args:
        out_type: output type. str, bytes or 'serialized_proto' or 'immutable_proto' (Default = str)
        num_threads: the number of threads used in the batch processing (Default = -1).
      """

      if num_threads is None:
        num_threads = self._num_threads

      if num_threads is None or type(num_threads) is not int:
        raise RuntimeError('num_threads must be int')

      if not input:
        return ''

      if out_type is str:
        if type(input) is int:
          return self._DecodeIds([input])
        if type(input) is str:
          return self._DecodePieces([input])

        if type(input) is list:
          if len(input) == 0 or type(input[0]) is int:
            return self._DecodeIds(input)
          if type(input[0]) is str:
            return self._DecodePieces(input)

          if type(input[0]) is list:
            if len(input[0]) == 0 or type(input[0][0]) is int:
             return self._DecodeIdsBatch(input, num_threads)
            if type(input[0][0]) is str:
             return self._DecodePiecesBatch(input, num_threads)

      if out_type is bytes:
        if type(input) is int:
          return self._DecodeIdsAsBytes([input])
        if type(input) is str:
          return self._DecodePieces([input])

        if type(input) is list:
          if len(input) == 0 or type(input[0]) is int:
            return self._DecodeIdsAsBytes(input)
          if type(input[0]) is str:
            return self._DecodePieces(input)

          if type(input[0]) is list:
            if len(input[0]) == 0 or type(input[0][0]) is int:
             return self._DecodeIdsAsBytesBatch(input, num_threads)
            if type(input[0][0]) is str:
             return self._DecodePiecesBatch(input, num_threads)

      if out_type == 'serialized_proto':
        if type(input) is int:
          return self._DecodeIdsAsSerializedProto([input])
        if type(input) is str:
          return self._DecodePiecesAsSerializedProto([input])

        if type(input) is list:
          if len(input) == 0 or type(input[0]) is int:
            return self._DecodeIdsAsSerializedProto(input)
          if type(input[0]) is str:
            return self._DecodePiecesAsSerializedProto(input)

          if type(input[0]) is list:
            if len(input[0]) == 0 or type(input[0][0]) is int:
             return self._DecodeIdsAsSerializedProtoBatch(input, num_threads)
            if type(input[0][0]) is str:
             return self._DecodePiecesAsSerializedProtoBatch(input, num_threads)


      if out_type == 'immutable_proto':
        if type(input) is int:
          return self._DecodeIdsAsImmutableProto([input])
        if type(input) is str:
          return self._DecodePiecesAsImmutableProto([input])

        if type(input) is list:
          if len(input) == 0 or type(input[0]) is int:
            return self._DecodeIdsAsImmutableProto(input)
          if type(input[0]) is str:
            return self._DecodePiecesAsImmutableProto(input)

          if type(input[0]) is list:
            if len(input[0]) == 0 or type(input[0][0]) is int:
             return self._DecodeIdsAsImmutableProtoBatch(input, num_threads)
            if type(input[0][0]) is str:
             return self._DecodePiecesAsImmutableProtoBatch(input, num_threads)


      raise RuntimeError('unknown output or input type')
      return None


    def DecodePieces(self, input, out_type=str, **kwargs):
      return self.Decode(input=input, out_type=out_type, **kwargs)


    def DecodeIds(self, input, out_type=str, **kwargs):
      return self.Decode(input=input, out_type=out_type, **kwargs)


    def DecodePiecesAsSerializedProto(self, input, out_type='serialized_proto', **kwargs):
      return self.Decode(input=input, out_type=out_type, **kwargs)


    def DecodeIdsAsSerializedProto(self, input, out_type='serialized_proto', **kwargs):
      return self.Decode(input=input, out_type=out_type, **kwargs)


    def DecodePiecesAsImmutableProto(self, input, out_type='immutable_proto', **kwargs):
      return self.Decode(input=input, out_type=out_type, **kwargs)


    def DecodeIdsAsImmutableProto(self, input, out_type='immutable_proto', **kwargs):
      return self.Decode(input=input, out_type=out_type, **kwargs)


    def CalculateEntropy(self, input, alpha, num_threads=None):
      """Calculate sentence entropy"""
      if type(input) is list:
        if num_threads is None:
          num_threads = self._num_threads
        if num_threads is None or type(num_threads) is not int:
          raise RuntimeError('num_threads must be int')
        return self._CalculateEntropyBatch(input, alpha, num_threads)

      return self._CalculateEntropy(input, alpha)


    def Normalize(self, input, with_offsets=None):
      def _normalize(text):
        if with_offsets:
          return self._NormalizeWithOffsets(text)
        return self._Normalize(text)

      if type(input) is list:
        return [_normalize(x) for x in input]
      return _normalize(input)

    def OverrideNormalizerSpec(self, **kwargs):
      new_kwargs = {}
      for key, value in kwargs.items():
        new_kwargs[key] = str(value)
      return self._OverrideNormalizerSpec(new_kwargs)


    def piece_size(self):
      return self.GetPieceSize()


    def vocab_size(self):
      return self.GetPieceSize()


    def __getstate__(self):
      return self.serialized_model_proto()


    def __setstate__(self, serialized_model_proto):
      self.__init__()
      self.LoadFromSerializedProto(serialized_model_proto)


    def __len__(self):
      return self.GetPieceSize()


    def __getitem__(self, piece):
      return self.PieceToId(piece)


    def Load(self, model_file=None, model_proto=None):
      """Overwride SentencePieceProcessor.Load to support both model_file and model_proto.

      Args:
        model_file: The sentencepiece model file path.
        model_proto: The sentencepiece model serialized proto. Either `model_file`
          or `model_proto` must be set.
      """
      if model_file and model_proto:
        raise RuntimeError('model_file and model_proto must be exclusive.')
      if model_proto:
        return self.LoadFromSerializedProto(model_proto)
      return self.LoadFromFile(model_file)


# Register SentencePieceProcessor in _sentencepiece:
_sentencepiece.SentencePieceProcessor_swigregister(SentencePieceProcessor)

def SetRandomGeneratorSeed(seed):
    return _sentencepiece.SetRandomGeneratorSeed(seed)

def SetMinLogLevel(v):
    return _sentencepiece.SetMinLogLevel(v)
class SentencePieceTrainer(object):
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

    def __init__(self, *args, **kwargs):
        raise AttributeError("No constructor defined")
    __repr__ = _swig_repr

    @staticmethod
    def _TrainFromString(arg):
        return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)

    @staticmethod
    def _TrainFromMap(args):
        return _sentencepiece.SentencePieceTrainer__TrainFromMap(args)

    @staticmethod
    def _TrainFromMap2(args, iter):
        return _sentencepiece.SentencePieceTrainer__TrainFromMap2(args, iter)

    @staticmethod
    def _TrainFromMap3(args):
        return _sentencepiece.SentencePieceTrainer__TrainFromMap3(args)

    @staticmethod
    def _TrainFromMap4(args, iter):
        return _sentencepiece.SentencePieceTrainer__TrainFromMap4(args, iter)

    @staticmethod
    def _Train(arg=None, **kwargs):
      """Train Sentencepiece model. Accept both kwargs and legacy string arg."""
      if arg is not None and type(arg) is str:
        return SentencePieceTrainer._TrainFromString(arg)

      def _encode(value):
        """Encode value to CSV.."""
        if type(value) is list:
          if sys.version_info[0] == 3:
            f = StringIO()
          else:
            f = BytesIO()
          writer = csv.writer(f, lineterminator='')
          writer.writerow([str(v) for v in value])
          return f.getvalue()
        else:
          return str(value)

      sentence_iterator = None
      model_writer = None
      new_kwargs = {}
      for key, value in kwargs.items():
        if key in ['sentence_iterator', 'sentence_reader']:
          sentence_iterator = value
        elif key in ['model_writer']:
          model_writer = value
        else:
          new_kwargs[key] = _encode(value)

      if model_writer:
        if sentence_iterator:
          model_proto = SentencePieceTrainer._TrainFromMap4(new_kwargs,
                                                           sentence_iterator)
        else:
          model_proto = SentencePieceTrainer._TrainFromMap3(new_kwargs)
        model_writer.write(model_proto)
      else:
        if sentence_iterator:
          return SentencePieceTrainer._TrainFromMap2(new_kwargs, sentence_iterator)
        else:
          return SentencePieceTrainer._TrainFromMap(new_kwargs)

      return None

    @staticmethod
    def Train(arg=None, logstream=None, **kwargs):
      with _LogStream(ostream=logstream):
        SentencePieceTrainer._Train(arg=arg, **kwargs)


# Register SentencePieceTrainer in _sentencepiece:
_sentencepiece.SentencePieceTrainer_swigregister(SentencePieceTrainer)
class SentencePieceNormalizer(object):
    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
    __repr__ = _swig_repr

    def __init__(self):
        _sentencepiece.SentencePieceNormalizer_swiginit(self, _sentencepiece.new_SentencePieceNormalizer())
    __swig_destroy__ = _sentencepiece.delete_SentencePieceNormalizer

    def LoadFromSerializedProto(self, serialized):
        return _sentencepiece.SentencePieceNormalizer_LoadFromSerializedProto(self, serialized)

    def LoadFromRuleTSV(self, filename):
        return _sentencepiece.SentencePieceNormalizer_LoadFromRuleTSV(self, filename)

    def LoadFromRuleName(self, name):
        return _sentencepiece.SentencePieceNormalizer_LoadFromRuleName(self, name)

    def serialized_model_proto(self):
        return _sentencepiece.SentencePieceNormalizer_serialized_model_proto(self)

    def LoadFromFile(self, arg):
        return _sentencepiece.SentencePieceNormalizer_LoadFromFile(self, arg)

    def _Normalize(self, text):
        return _sentencepiece.SentencePieceNormalizer__Normalize(self, text)

    def _NormalizeWithOffsets(self, text):
        return _sentencepiece.SentencePieceNormalizer__NormalizeWithOffsets(self, text)

    def _SetProtoField(self, name, value):
        return _sentencepiece.SentencePieceNormalizer__SetProtoField(self, name, value)

    def Init(self,
             model_file=None,
             model_proto=None,
             rule_tsv=None,
             rule_name=None,
             add_dummy_prefix=False,
             escape_whitespaces=False,
             remove_extra_whitespaces=False):
      """Initialzie sentencePieceNormalizer.

      Args:
        model_file: The sentencepiece model file path.
        model_proto: The sentencepiece model serialized proto.
        rule_tsv: The normalization rule file in TSV format.
        rule_name: Pre-defined normalization name.
        add_dummy_prefix: add dummy prefix.
        escape_whitespaces: escape whitespaces.
        remove_extra_whitespaces: remove extra whitespaces.
      """

      _sentencepiece_normalizer_init_native(self)

      if model_file:
        status = self.LoadFromFile(model_file)
      elif model_proto:
        status = self.LoadFromSerializedProto(model_proto)
      elif rule_tsv:
        status = self.LoadFromRuleTSV(rule_tsv)
      elif rule_name:
        status = self.LoadFromRuleName(rule_name)
      else:
        raise RuntimeError('no model is specified')

      if status:
        self._SetProtoField('add_dummy_prefix', add_dummy_prefix)
        self._SetProtoField('escape_whitespaces', escape_whitespaces)
        self._SetProtoField('remove_extra_whitespaces', remove_extra_whitespaces)

    def Normalize(self, input, with_offsets=None):
      def _normalize(text):
        if with_offsets:
          return self._NormalizeWithOffsets(text)
        return self._Normalize(text)

      if type(input) is list:
        return [_normalize(x) for x in input]
      return _normalize(input)


    def __getstate__(self):
      return self.serialized_model_proto()


    def __setstate__(self, serialized_model_proto):
      self.__init__()
      self.LoadFromSerializedProto(serialized_model_proto)


# Register SentencePieceNormalizer in _sentencepiece:
_sentencepiece.SentencePieceNormalizer_swigregister(SentencePieceNormalizer)


import re
import csv
import sys
import os
from io import StringIO
from io import BytesIO


def _add_snake_case(classname):
  """Added snake_cased method from CammelCased method."""

  snake_map = {}
  for k, v in classname.__dict__.items():
    if re.match(r'^[A-Z]+', k):
      snake = re.sub(r'(?<!^)(?=[A-Z])', '_',
                     k).lower().replace('n_best', 'nbest')
      snake_map[snake] = v
  for k, v in snake_map.items():
    setattr(classname, k, v)


def _batchnize(classname, name):
  """Enables batch request for the method classname.name."""
  func = getattr(classname, name, None)
  def _func(v, n):
    if type(n) is int and (n < 0 or n >= v.piece_size()):
      raise IndexError('piece id is out of range.')
    return func(v, n)

  def _batched_func(self, arg):
    if type(arg) is list:
      return [_func(self, n) for n in arg]
    else:
      return _func(self, arg)

  setattr(classname, name, _batched_func)


_sentencepiece_processor_init_native = SentencePieceProcessor.__init__
_sentencepiece_normalizer_init_native = SentencePieceNormalizer.__init__
setattr(SentencePieceProcessor, '__init__', SentencePieceProcessor.Init)
setattr(SentencePieceNormalizer, '__init__', SentencePieceNormalizer.Init)

SentencePieceProcessor.Tokenize = SentencePieceProcessor.Encode
SentencePieceProcessor.Detokenize = SentencePieceProcessor.Decode

for m in [
    'PieceToId', 'IdToPiece', 'GetScore', 'IsUnknown', 'IsControl', 'IsUnused',
    'IsByte'
]:
  _batchnize(SentencePieceProcessor, m)

_add_snake_case(SentencePieceProcessor)
_add_snake_case(SentencePieceTrainer)
_add_snake_case(SentencePieceNormalizer)
set_random_generator_seed = SetRandomGeneratorSeed
set_min_log_level = SetMinLogLevel

from ._version import __version__

class _LogStream(object):
  def __init__(self, ostream=None):
    self.ostream = ostream
    if self.ostream is not None:
      self.orig_stream_fileno = sys.stderr.fileno()

  def __enter__(self):
    if self.ostream is not None:
      self.orig_stream_dup = os.dup(self.orig_stream_fileno)
      os.dup2(self.ostream.fileno(), self.orig_stream_fileno)

  def __exit__(self, type, value, traceback):
    if self.ostream is not None:
      os.close(self.orig_stream_fileno)
      os.dup2(self.orig_stream_dup, self.orig_stream_fileno)
      os.close(self.orig_stream_dup)
      self.ostream.close()