KuangDW
Add laser2.spm using Git LFS
05d3571
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Tool to calculate multilingual similarity error rate
# on various predefined test sets
import os
import argparse
import pandas
import tempfile
import numpy as np
from pathlib import Path
import itertools
import logging
import sys
from typing import List, Tuple, Dict
from tabulate import tabulate
from collections import defaultdict
from xsim import xSIM
from embed import embed_sentences, load_model
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
logger = logging.getLogger("eval")
class Eval:
def __init__(self, args):
self.base_dir = args.base_dir
self.corpus = args.corpus
self.split = args.corpus_part
self.min_sents = args.min_sents
self.index_comparison = args.index_comparison
self.emb_dimension = args.embedding_dimension
self.encoder_args = {
k: v
for k, v in args._get_kwargs()
if k in ["max_sentences", "max_tokens", "cpu", "sort_kind", "verbose"]
}
self.src_bpe_codes = args.src_bpe_codes
self.tgt_bpe_codes = args.tgt_bpe_codes
self.src_spm_model = args.src_spm_model
self.tgt_spm_model = args.tgt_spm_model
logger.info("loading src encoder")
self.src_encoder = load_model(
args.src_encoder,
self.src_spm_model,
self.src_bpe_codes,
hugging_face=args.use_hugging_face,
**self.encoder_args,
)
if args.tgt_encoder:
logger.info("loading tgt encoder")
self.tgt_encoder = load_model(
args.tgt_encoder,
self.tgt_spm_model,
self.tgt_bpe_codes,
hugging_face=args.use_hugging_face,
**self.encoder_args,
)
else:
logger.info("encoding tgt using src encoder")
self.tgt_encoder = self.src_encoder
self.tgt_bpe_codes = self.src_bpe_codes
self.tgt_spm_model = self.src_spm_model
self.nway = args.nway
self.buffer_size = args.buffer_size
self.fp16 = args.fp16
self.margin = args.margin
def _embed(
self, tmpdir, langs, encoder, spm_model, bpe_codes, tgt_aug_langs=[]
) -> List[List[str]]:
emb_data = []
for lang in langs:
augjson = None
fname = f"{lang}.{self.split}"
infile = self.base_dir / self.corpus / self.split / fname
assert infile.exists(), f"{infile} does not exist"
outfile = tmpdir / fname
if lang in tgt_aug_langs:
fname = f"{lang}_augmented.{self.split}"
fjname = f"{lang}_errtype.{self.split}.json"
augment_dir = self.base_dir / self.corpus / (self.split + "_augmented")
augjson = augment_dir / fjname
auginfile = augment_dir / fname
assert augjson.exists(), f"{augjson} does not exist"
assert auginfile.exists(), f"{auginfile} does not exist"
combined_infile = tmpdir / f"combined_{lang}"
with open(combined_infile, "w") as newfile:
for f in [infile, auginfile]:
with open(f) as fin:
newfile.write(fin.read())
infile = combined_infile
embed_sentences(
str(infile),
str(outfile),
encoder=encoder,
spm_model=spm_model,
bpe_codes=bpe_codes,
token_lang=lang if bpe_codes else "--",
buffer_size=self.buffer_size,
fp16=self.fp16,
**self.encoder_args,
)
assert (
os.path.isfile(outfile) and os.path.getsize(outfile) > 0
), f"Error encoding {infile}"
emb_data.append([lang, infile, outfile, augjson])
return emb_data
def _xsim(
self, src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson=None
) -> Tuple[int, int, Dict[str, int]]:
return xSIM(
src_emb,
tgt_emb,
margin=self.margin,
dim=self.emb_dimension,
fp16=self.fp16,
eval_text=tgt_txt if not self.index_comparison else None,
augmented_json=augjson,
)
def calc_xsim(
self, embdir, src_langs, tgt_langs, tgt_aug_langs, err_sum=0, totl_nbex=0
) -> None:
outputs = []
src_emb_data = self._embed(
embdir,
src_langs,
self.src_encoder,
self.src_spm_model,
self.src_bpe_codes,
)
tgt_emb_data = self._embed(
embdir,
tgt_langs,
self.tgt_encoder,
self.tgt_spm_model,
self.tgt_bpe_codes,
tgt_aug_langs,
)
aug_df = defaultdict(lambda: defaultdict())
combs = list(itertools.product(src_emb_data, tgt_emb_data))
for (src_lang, _, src_emb, _), (tgt_lang, tgt_txt, tgt_emb, augjson) in combs:
if src_lang == tgt_lang:
continue
err, nbex, aug_report = self._xsim(
src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson
)
result = round(100 * err / nbex, 2)
if tgt_lang in tgt_aug_langs:
aug_df[tgt_lang][src_lang] = aug_report
if nbex < self.min_sents:
result = "skipped"
else:
err_sum += err
totl_nbex += nbex
outputs.append(
[self.corpus, f"{src_lang}-{tgt_lang}", f"{result}", f"{nbex}"]
)
outputs.append(
[
self.corpus,
"average",
f"{round(100 * err_sum / totl_nbex, 2)}",
f"{len(combs)}",
]
)
print(
tabulate(
outputs,
tablefmt="psql",
headers=[
"dataset",
"src-tgt",
"xsim" + ("(++)" if tgt_aug_langs else ""),
"nbex",
],
)
)
for tgt_aug_lang in tgt_aug_langs:
df = pandas.DataFrame.from_dict(aug_df[tgt_aug_lang]).fillna(0).T
print(
f"\nAbsolute error under augmented transformations for: {tgt_aug_lang}"
)
print(f"{tabulate(df, df.columns, floatfmt='.2f', tablefmt='grid')}")
def calc_xsim_nway(self, embdir, langs) -> None:
err_matrix = np.zeros((len(langs), len(langs)))
emb_data = self._embed(
embdir,
langs,
self.src_encoder,
self.src_spm_model,
self.src_bpe_codes,
)
for i1, (src_lang, _, src_emb, _) in enumerate(emb_data):
for i2, (tgt_lang, tgt_txt, tgt_emb, _) in enumerate(emb_data):
if src_lang == tgt_lang:
err_matrix[i1, i2] = 0
else:
err, nbex, _ = self._xsim(
src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt
)
err_matrix[i1, i2] = 100 * err / nbex
df = pandas.DataFrame(err_matrix, columns=langs, index=langs)
df.loc["avg"] = df.sum() / float(df.shape[0] - 1) # exclude diagonal in average
print(f"\n{tabulate(df, langs, floatfmt='.2f', tablefmt='grid')}\n\n")
print(f"Global average: {df.loc['avg'].mean():.2f}")
def run_eval(args) -> None:
evaluation = Eval(args)
tmp_dir = None
if args.embed_dir:
os.makedirs(args.embed_dir, exist_ok=True)
embed_dir = args.embed_dir
else:
tmp_dir = tempfile.TemporaryDirectory()
embed_dir = Path(tmp_dir.name)
src_langs = sorted(args.src_langs.split(","))
tgt_aug_langs = sorted(args.tgt_aug_langs.split(",")) if args.tgt_aug_langs else []
if evaluation.nway:
evaluation.calc_xsim_nway(embed_dir, src_langs)
else:
assert (
args.tgt_langs
), "Please provide tgt langs when not performing n-way comparison"
tgt_langs = sorted(args.tgt_langs.split(","))
evaluation.calc_xsim(embed_dir, src_langs, tgt_langs, tgt_aug_langs)
if tmp_dir:
tmp_dir.cleanup() # remove temporary directory
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="LASER: multilingual similarity error evaluation"
)
parser.add_argument(
"--base-dir",
type=Path,
default=None,
help="Base directory for evaluation files",
required=True,
)
parser.add_argument(
"--corpus",
type=str,
default=None,
help="Name of evaluation corpus",
required=True,
)
parser.add_argument(
"--corpus-part",
type=str,
default=None,
help="Specify split of the corpus to use e.g., dev",
required=True,
)
parser.add_argument(
"--margin",
type=str,
default=None,
help="Margin for xSIM calculation. See: https://aclanthology.org/P19-1309",
)
parser.add_argument(
"--min-sents",
type=int,
default=100,
help="Only use test sets which have at least N sentences",
)
parser.add_argument(
"--nway", action="store_true", help="Test N-way for corpora which support it"
)
parser.add_argument(
"--embed-dir",
type=Path,
default=None,
help="Store/load embeddings from specified directory (default temporary)",
)
parser.add_argument(
"--index-comparison",
action="store_true",
help="Use index comparison instead of texts (not recommended when test data contains duplicates)",
)
parser.add_argument("--src-spm-model", type=str, default=None)
parser.add_argument("--tgt-spm-model", type=str, default=None)
parser.add_argument(
"--src-bpe-codes",
type=str,
default=None,
help="Path to bpe codes for src model",
)
parser.add_argument(
"--tgt-bpe-codes",
type=str,
default=None,
help="Path to bpe codes for tgt model",
)
parser.add_argument("--src-encoder", type=str, default=None, required=True)
parser.add_argument("--tgt-encoder", type=str, default=None)
parser.add_argument(
"--buffer-size", type=int, default=100, help="Buffer size (sentences)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=12000,
help="Maximum number of tokens to process in a batch",
)
parser.add_argument(
"--max-sentences",
type=int,
default=None,
help="Maximum number of sentences to process in a batch",
)
parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
parser.add_argument(
"--src-langs",
type=str,
default=None,
help="Source-side languages for evaluation",
required=True,
)
parser.add_argument(
"--tgt-langs",
type=str,
default=None,
help="Target-side languages for evaluation",
)
parser.add_argument(
"--tgt-aug-langs",
type=str,
default=None,
help="languages with augmented data",
required=False,
)
parser.add_argument(
"--fp16",
action="store_true",
help="Store embedding matrices in fp16 instead of fp32",
)
parser.add_argument(
"--sort-kind",
type=str,
default="quicksort",
choices=["quicksort", "mergesort"],
help="Algorithm used to sort batch by length",
)
parser.add_argument(
"--use-hugging-face",
action="store_true",
help="Use a HuggingFace sentence transformer",
)
parser.add_argument(
"--embedding-dimension",
type=int,
default=1024,
help="Embedding dimension for encoders",
)
parser.add_argument("-v", "--verbose", action="store_true", help="Detailed output")
args = parser.parse_args()
run_eval(args)