Spaces:
Sleeping
Sleeping
File size: 12,802 Bytes
05d3571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Tool to calculate multilingual similarity error rate
# on various predefined test sets
import os
import argparse
import pandas
import tempfile
import numpy as np
from pathlib import Path
import itertools
import logging
import sys
from typing import List, Tuple, Dict
from tabulate import tabulate
from collections import defaultdict
from xsim import xSIM
from embed import embed_sentences, load_model
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
logger = logging.getLogger("eval")
class Eval:
def __init__(self, args):
self.base_dir = args.base_dir
self.corpus = args.corpus
self.split = args.corpus_part
self.min_sents = args.min_sents
self.index_comparison = args.index_comparison
self.emb_dimension = args.embedding_dimension
self.encoder_args = {
k: v
for k, v in args._get_kwargs()
if k in ["max_sentences", "max_tokens", "cpu", "sort_kind", "verbose"]
}
self.src_bpe_codes = args.src_bpe_codes
self.tgt_bpe_codes = args.tgt_bpe_codes
self.src_spm_model = args.src_spm_model
self.tgt_spm_model = args.tgt_spm_model
logger.info("loading src encoder")
self.src_encoder = load_model(
args.src_encoder,
self.src_spm_model,
self.src_bpe_codes,
hugging_face=args.use_hugging_face,
**self.encoder_args,
)
if args.tgt_encoder:
logger.info("loading tgt encoder")
self.tgt_encoder = load_model(
args.tgt_encoder,
self.tgt_spm_model,
self.tgt_bpe_codes,
hugging_face=args.use_hugging_face,
**self.encoder_args,
)
else:
logger.info("encoding tgt using src encoder")
self.tgt_encoder = self.src_encoder
self.tgt_bpe_codes = self.src_bpe_codes
self.tgt_spm_model = self.src_spm_model
self.nway = args.nway
self.buffer_size = args.buffer_size
self.fp16 = args.fp16
self.margin = args.margin
def _embed(
self, tmpdir, langs, encoder, spm_model, bpe_codes, tgt_aug_langs=[]
) -> List[List[str]]:
emb_data = []
for lang in langs:
augjson = None
fname = f"{lang}.{self.split}"
infile = self.base_dir / self.corpus / self.split / fname
assert infile.exists(), f"{infile} does not exist"
outfile = tmpdir / fname
if lang in tgt_aug_langs:
fname = f"{lang}_augmented.{self.split}"
fjname = f"{lang}_errtype.{self.split}.json"
augment_dir = self.base_dir / self.corpus / (self.split + "_augmented")
augjson = augment_dir / fjname
auginfile = augment_dir / fname
assert augjson.exists(), f"{augjson} does not exist"
assert auginfile.exists(), f"{auginfile} does not exist"
combined_infile = tmpdir / f"combined_{lang}"
with open(combined_infile, "w") as newfile:
for f in [infile, auginfile]:
with open(f) as fin:
newfile.write(fin.read())
infile = combined_infile
embed_sentences(
str(infile),
str(outfile),
encoder=encoder,
spm_model=spm_model,
bpe_codes=bpe_codes,
token_lang=lang if bpe_codes else "--",
buffer_size=self.buffer_size,
fp16=self.fp16,
**self.encoder_args,
)
assert (
os.path.isfile(outfile) and os.path.getsize(outfile) > 0
), f"Error encoding {infile}"
emb_data.append([lang, infile, outfile, augjson])
return emb_data
def _xsim(
self, src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson=None
) -> Tuple[int, int, Dict[str, int]]:
return xSIM(
src_emb,
tgt_emb,
margin=self.margin,
dim=self.emb_dimension,
fp16=self.fp16,
eval_text=tgt_txt if not self.index_comparison else None,
augmented_json=augjson,
)
def calc_xsim(
self, embdir, src_langs, tgt_langs, tgt_aug_langs, err_sum=0, totl_nbex=0
) -> None:
outputs = []
src_emb_data = self._embed(
embdir,
src_langs,
self.src_encoder,
self.src_spm_model,
self.src_bpe_codes,
)
tgt_emb_data = self._embed(
embdir,
tgt_langs,
self.tgt_encoder,
self.tgt_spm_model,
self.tgt_bpe_codes,
tgt_aug_langs,
)
aug_df = defaultdict(lambda: defaultdict())
combs = list(itertools.product(src_emb_data, tgt_emb_data))
for (src_lang, _, src_emb, _), (tgt_lang, tgt_txt, tgt_emb, augjson) in combs:
if src_lang == tgt_lang:
continue
err, nbex, aug_report = self._xsim(
src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson
)
result = round(100 * err / nbex, 2)
if tgt_lang in tgt_aug_langs:
aug_df[tgt_lang][src_lang] = aug_report
if nbex < self.min_sents:
result = "skipped"
else:
err_sum += err
totl_nbex += nbex
outputs.append(
[self.corpus, f"{src_lang}-{tgt_lang}", f"{result}", f"{nbex}"]
)
outputs.append(
[
self.corpus,
"average",
f"{round(100 * err_sum / totl_nbex, 2)}",
f"{len(combs)}",
]
)
print(
tabulate(
outputs,
tablefmt="psql",
headers=[
"dataset",
"src-tgt",
"xsim" + ("(++)" if tgt_aug_langs else ""),
"nbex",
],
)
)
for tgt_aug_lang in tgt_aug_langs:
df = pandas.DataFrame.from_dict(aug_df[tgt_aug_lang]).fillna(0).T
print(
f"\nAbsolute error under augmented transformations for: {tgt_aug_lang}"
)
print(f"{tabulate(df, df.columns, floatfmt='.2f', tablefmt='grid')}")
def calc_xsim_nway(self, embdir, langs) -> None:
err_matrix = np.zeros((len(langs), len(langs)))
emb_data = self._embed(
embdir,
langs,
self.src_encoder,
self.src_spm_model,
self.src_bpe_codes,
)
for i1, (src_lang, _, src_emb, _) in enumerate(emb_data):
for i2, (tgt_lang, tgt_txt, tgt_emb, _) in enumerate(emb_data):
if src_lang == tgt_lang:
err_matrix[i1, i2] = 0
else:
err, nbex, _ = self._xsim(
src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt
)
err_matrix[i1, i2] = 100 * err / nbex
df = pandas.DataFrame(err_matrix, columns=langs, index=langs)
df.loc["avg"] = df.sum() / float(df.shape[0] - 1) # exclude diagonal in average
print(f"\n{tabulate(df, langs, floatfmt='.2f', tablefmt='grid')}\n\n")
print(f"Global average: {df.loc['avg'].mean():.2f}")
def run_eval(args) -> None:
evaluation = Eval(args)
tmp_dir = None
if args.embed_dir:
os.makedirs(args.embed_dir, exist_ok=True)
embed_dir = args.embed_dir
else:
tmp_dir = tempfile.TemporaryDirectory()
embed_dir = Path(tmp_dir.name)
src_langs = sorted(args.src_langs.split(","))
tgt_aug_langs = sorted(args.tgt_aug_langs.split(",")) if args.tgt_aug_langs else []
if evaluation.nway:
evaluation.calc_xsim_nway(embed_dir, src_langs)
else:
assert (
args.tgt_langs
), "Please provide tgt langs when not performing n-way comparison"
tgt_langs = sorted(args.tgt_langs.split(","))
evaluation.calc_xsim(embed_dir, src_langs, tgt_langs, tgt_aug_langs)
if tmp_dir:
tmp_dir.cleanup() # remove temporary directory
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="LASER: multilingual similarity error evaluation"
)
parser.add_argument(
"--base-dir",
type=Path,
default=None,
help="Base directory for evaluation files",
required=True,
)
parser.add_argument(
"--corpus",
type=str,
default=None,
help="Name of evaluation corpus",
required=True,
)
parser.add_argument(
"--corpus-part",
type=str,
default=None,
help="Specify split of the corpus to use e.g., dev",
required=True,
)
parser.add_argument(
"--margin",
type=str,
default=None,
help="Margin for xSIM calculation. See: https://aclanthology.org/P19-1309",
)
parser.add_argument(
"--min-sents",
type=int,
default=100,
help="Only use test sets which have at least N sentences",
)
parser.add_argument(
"--nway", action="store_true", help="Test N-way for corpora which support it"
)
parser.add_argument(
"--embed-dir",
type=Path,
default=None,
help="Store/load embeddings from specified directory (default temporary)",
)
parser.add_argument(
"--index-comparison",
action="store_true",
help="Use index comparison instead of texts (not recommended when test data contains duplicates)",
)
parser.add_argument("--src-spm-model", type=str, default=None)
parser.add_argument("--tgt-spm-model", type=str, default=None)
parser.add_argument(
"--src-bpe-codes",
type=str,
default=None,
help="Path to bpe codes for src model",
)
parser.add_argument(
"--tgt-bpe-codes",
type=str,
default=None,
help="Path to bpe codes for tgt model",
)
parser.add_argument("--src-encoder", type=str, default=None, required=True)
parser.add_argument("--tgt-encoder", type=str, default=None)
parser.add_argument(
"--buffer-size", type=int, default=100, help="Buffer size (sentences)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=12000,
help="Maximum number of tokens to process in a batch",
)
parser.add_argument(
"--max-sentences",
type=int,
default=None,
help="Maximum number of sentences to process in a batch",
)
parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
parser.add_argument(
"--src-langs",
type=str,
default=None,
help="Source-side languages for evaluation",
required=True,
)
parser.add_argument(
"--tgt-langs",
type=str,
default=None,
help="Target-side languages for evaluation",
)
parser.add_argument(
"--tgt-aug-langs",
type=str,
default=None,
help="languages with augmented data",
required=False,
)
parser.add_argument(
"--fp16",
action="store_true",
help="Store embedding matrices in fp16 instead of fp32",
)
parser.add_argument(
"--sort-kind",
type=str,
default="quicksort",
choices=["quicksort", "mergesort"],
help="Algorithm used to sort batch by length",
)
parser.add_argument(
"--use-hugging-face",
action="store_true",
help="Use a HuggingFace sentence transformer",
)
parser.add_argument(
"--embedding-dimension",
type=int,
default=1024,
help="Embedding dimension for encoders",
)
parser.add_argument("-v", "--verbose", action="store_true", help="Detailed output")
args = parser.parse_args()
run_eval(args)
|