File size: 12,802 Bytes
05d3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER  Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Tool to calculate multilingual similarity error rate
# on various predefined test sets


import os
import argparse
import pandas
import tempfile
import numpy as np
from pathlib import Path
import itertools
import logging
import sys
from typing import List, Tuple, Dict
from tabulate import tabulate
from collections import defaultdict
from xsim import xSIM
from embed import embed_sentences, load_model

logging.basicConfig(
    stream=sys.stdout,
    level=logging.INFO,
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
logger = logging.getLogger("eval")


class Eval:
    def __init__(self, args):
        self.base_dir = args.base_dir
        self.corpus = args.corpus
        self.split = args.corpus_part
        self.min_sents = args.min_sents
        self.index_comparison = args.index_comparison
        self.emb_dimension = args.embedding_dimension
        self.encoder_args = {
            k: v
            for k, v in args._get_kwargs()
            if k in ["max_sentences", "max_tokens", "cpu", "sort_kind", "verbose"]
        }
        self.src_bpe_codes = args.src_bpe_codes
        self.tgt_bpe_codes = args.tgt_bpe_codes
        self.src_spm_model = args.src_spm_model
        self.tgt_spm_model = args.tgt_spm_model
        logger.info("loading src encoder")
        self.src_encoder = load_model(
            args.src_encoder,
            self.src_spm_model,
            self.src_bpe_codes,
            hugging_face=args.use_hugging_face,
            **self.encoder_args,
        )
        if args.tgt_encoder:
            logger.info("loading tgt encoder")
            self.tgt_encoder = load_model(
                args.tgt_encoder,
                self.tgt_spm_model,
                self.tgt_bpe_codes,
                hugging_face=args.use_hugging_face,
                **self.encoder_args,
            )
        else:
            logger.info("encoding tgt using src encoder")
            self.tgt_encoder = self.src_encoder
            self.tgt_bpe_codes = self.src_bpe_codes
            self.tgt_spm_model = self.src_spm_model
        self.nway = args.nway
        self.buffer_size = args.buffer_size
        self.fp16 = args.fp16
        self.margin = args.margin

    def _embed(
        self, tmpdir, langs, encoder, spm_model, bpe_codes, tgt_aug_langs=[]
    ) -> List[List[str]]:
        emb_data = []
        for lang in langs:
            augjson = None
            fname = f"{lang}.{self.split}"
            infile = self.base_dir / self.corpus / self.split / fname
            assert infile.exists(), f"{infile} does not exist"
            outfile = tmpdir / fname
            if lang in tgt_aug_langs:
                fname = f"{lang}_augmented.{self.split}"
                fjname = f"{lang}_errtype.{self.split}.json"
                augment_dir = self.base_dir / self.corpus / (self.split + "_augmented")
                augjson = augment_dir / fjname
                auginfile = augment_dir / fname
                assert augjson.exists(), f"{augjson} does not exist"
                assert auginfile.exists(), f"{auginfile} does not exist"
                combined_infile = tmpdir / f"combined_{lang}"
                with open(combined_infile, "w") as newfile:
                    for f in [infile, auginfile]:
                        with open(f) as fin:
                            newfile.write(fin.read())
                infile = combined_infile
            embed_sentences(
                str(infile),
                str(outfile),
                encoder=encoder,
                spm_model=spm_model,
                bpe_codes=bpe_codes,
                token_lang=lang if bpe_codes else "--",
                buffer_size=self.buffer_size,
                fp16=self.fp16,
                **self.encoder_args,
            )
            assert (
                os.path.isfile(outfile) and os.path.getsize(outfile) > 0
            ), f"Error encoding {infile}"
            emb_data.append([lang, infile, outfile, augjson])
        return emb_data

    def _xsim(
        self, src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson=None
    ) -> Tuple[int, int, Dict[str, int]]:
        return xSIM(
            src_emb,
            tgt_emb,
            margin=self.margin,
            dim=self.emb_dimension,
            fp16=self.fp16,
            eval_text=tgt_txt if not self.index_comparison else None,
            augmented_json=augjson,
        )

    def calc_xsim(
        self, embdir, src_langs, tgt_langs, tgt_aug_langs, err_sum=0, totl_nbex=0
    ) -> None:
        outputs = []
        src_emb_data = self._embed(
            embdir,
            src_langs,
            self.src_encoder,
            self.src_spm_model,
            self.src_bpe_codes,
        )
        tgt_emb_data = self._embed(
            embdir,
            tgt_langs,
            self.tgt_encoder,
            self.tgt_spm_model,
            self.tgt_bpe_codes,
            tgt_aug_langs,
        )
        aug_df = defaultdict(lambda: defaultdict())
        combs = list(itertools.product(src_emb_data, tgt_emb_data))
        for (src_lang, _, src_emb, _), (tgt_lang, tgt_txt, tgt_emb, augjson) in combs:
            if src_lang == tgt_lang:
                continue
            err, nbex, aug_report = self._xsim(
                src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt, augjson
            )
            result = round(100 * err / nbex, 2)
            if tgt_lang in tgt_aug_langs:
                aug_df[tgt_lang][src_lang] = aug_report
            if nbex < self.min_sents:
                result = "skipped"
            else:
                err_sum += err
                totl_nbex += nbex
            outputs.append(
                [self.corpus, f"{src_lang}-{tgt_lang}", f"{result}", f"{nbex}"]
            )
        outputs.append(
            [
                self.corpus,
                "average",
                f"{round(100 * err_sum / totl_nbex, 2)}",
                f"{len(combs)}",
            ]
        )
        print(
            tabulate(
                outputs,
                tablefmt="psql",
                headers=[
                    "dataset",
                    "src-tgt",
                    "xsim" + ("(++)" if tgt_aug_langs else ""),
                    "nbex",
                ],
            )
        )
        for tgt_aug_lang in tgt_aug_langs:
            df = pandas.DataFrame.from_dict(aug_df[tgt_aug_lang]).fillna(0).T
            print(
                f"\nAbsolute error under augmented transformations for: {tgt_aug_lang}"
            )
            print(f"{tabulate(df, df.columns, floatfmt='.2f', tablefmt='grid')}")

    def calc_xsim_nway(self, embdir, langs) -> None:
        err_matrix = np.zeros((len(langs), len(langs)))
        emb_data = self._embed(
            embdir,
            langs,
            self.src_encoder,
            self.src_spm_model,
            self.src_bpe_codes,
        )
        for i1, (src_lang, _, src_emb, _) in enumerate(emb_data):
            for i2, (tgt_lang, tgt_txt, tgt_emb, _) in enumerate(emb_data):
                if src_lang == tgt_lang:
                    err_matrix[i1, i2] = 0
                else:
                    err, nbex, _ = self._xsim(
                        src_emb, src_lang, tgt_emb, tgt_lang, tgt_txt
                    )
                    err_matrix[i1, i2] = 100 * err / nbex
        df = pandas.DataFrame(err_matrix, columns=langs, index=langs)
        df.loc["avg"] = df.sum() / float(df.shape[0] - 1)  # exclude diagonal in average
        print(f"\n{tabulate(df, langs, floatfmt='.2f', tablefmt='grid')}\n\n")
        print(f"Global average: {df.loc['avg'].mean():.2f}")


def run_eval(args) -> None:
    evaluation = Eval(args)
    tmp_dir = None
    if args.embed_dir:
        os.makedirs(args.embed_dir, exist_ok=True)
        embed_dir = args.embed_dir
    else:
        tmp_dir = tempfile.TemporaryDirectory()
        embed_dir = Path(tmp_dir.name)
    src_langs = sorted(args.src_langs.split(","))
    tgt_aug_langs = sorted(args.tgt_aug_langs.split(",")) if args.tgt_aug_langs else []
    if evaluation.nway:
        evaluation.calc_xsim_nway(embed_dir, src_langs)
    else:
        assert (
            args.tgt_langs
        ), "Please provide tgt langs when not performing n-way comparison"
        tgt_langs = sorted(args.tgt_langs.split(","))
        evaluation.calc_xsim(embed_dir, src_langs, tgt_langs, tgt_aug_langs)
    if tmp_dir:
        tmp_dir.cleanup()  # remove temporary directory


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="LASER: multilingual similarity error evaluation"
    )
    parser.add_argument(
        "--base-dir",
        type=Path,
        default=None,
        help="Base directory for evaluation files",
        required=True,
    )
    parser.add_argument(
        "--corpus",
        type=str,
        default=None,
        help="Name of evaluation corpus",
        required=True,
    )
    parser.add_argument(
        "--corpus-part",
        type=str,
        default=None,
        help="Specify split of the corpus to use e.g., dev",
        required=True,
    )
    parser.add_argument(
        "--margin",
        type=str,
        default=None,
        help="Margin for xSIM calculation. See: https://aclanthology.org/P19-1309",
    )
    parser.add_argument(
        "--min-sents",
        type=int,
        default=100,
        help="Only use test sets which have at least N sentences",
    )
    parser.add_argument(
        "--nway", action="store_true", help="Test N-way for corpora which support it"
    )
    parser.add_argument(
        "--embed-dir",
        type=Path,
        default=None,
        help="Store/load embeddings from specified directory (default temporary)",
    )
    parser.add_argument(
        "--index-comparison",
        action="store_true",
        help="Use index comparison instead of texts (not recommended when test data contains duplicates)",
    )
    parser.add_argument("--src-spm-model", type=str, default=None)
    parser.add_argument("--tgt-spm-model", type=str, default=None)
    parser.add_argument(
        "--src-bpe-codes",
        type=str,
        default=None,
        help="Path to bpe codes for src model",
    )
    parser.add_argument(
        "--tgt-bpe-codes",
        type=str,
        default=None,
        help="Path to bpe codes for tgt model",
    )
    parser.add_argument("--src-encoder", type=str, default=None, required=True)
    parser.add_argument("--tgt-encoder", type=str, default=None)
    parser.add_argument(
        "--buffer-size", type=int, default=100, help="Buffer size (sentences)"
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=12000,
        help="Maximum number of tokens to process in a batch",
    )
    parser.add_argument(
        "--max-sentences",
        type=int,
        default=None,
        help="Maximum number of sentences to process in a batch",
    )
    parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")

    parser.add_argument(
        "--src-langs",
        type=str,
        default=None,
        help="Source-side languages for evaluation",
        required=True,
    )
    parser.add_argument(
        "--tgt-langs",
        type=str,
        default=None,
        help="Target-side languages for evaluation",
    )
    parser.add_argument(
        "--tgt-aug-langs",
        type=str,
        default=None,
        help="languages with augmented data",
        required=False,
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Store embedding matrices in fp16 instead of fp32",
    )
    parser.add_argument(
        "--sort-kind",
        type=str,
        default="quicksort",
        choices=["quicksort", "mergesort"],
        help="Algorithm used to sort batch by length",
    )
    parser.add_argument(
        "--use-hugging-face",
        action="store_true",
        help="Use a HuggingFace sentence transformer",
    )
    parser.add_argument(
        "--embedding-dimension",
        type=int,
        default=1024,
        help="Embedding dimension for encoders",
    )
    parser.add_argument("-v", "--verbose", action="store_true", help="Detailed output")
    args = parser.parse_args()
    run_eval(args)