Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,3 @@
|
|
1 |
-
此外,尽管我希望auto_examples的填充如 # Examples for auto-generation
|
2 |
-
auto_examples = [
|
3 |
-
["Write a short poem about artificial intelligence",
|
4 |
-
"Qwen/Qwen2.5-7B-Instruct",
|
5 |
-
"Qwen/Qwen2.5-7B-Instruct",
|
6 |
-
"01-ai/Yi-6B-Chat",
|
7 |
-
"01-ai/Yi-6B-Chat"],
|
8 |
-
["我听说有些人有高血压却没有任何症状。这是真的吗?",
|
9 |
-
"FreedomIntelligence/Apollo-7B",
|
10 |
-
"FreedomIntelligence/Apollo-7B",
|
11 |
-
"microsoft/phi-2",
|
12 |
-
"openchat/openchat-3.5-0106"]
|
13 |
-
]这个所示,但是我希望呈现在前端的case只有instruction/question, model 1, model 2三列,这个可以实现吗
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
import gradio as gr
|
18 |
import os
|
19 |
import spaces
|
@@ -127,17 +111,13 @@ def generate_response(instruction, model_path, progress=gr.Progress()):
|
|
127 |
do_sample=True
|
128 |
)
|
129 |
|
130 |
-
# 清理响应,移除提示词部分
|
131 |
full_response = response_tokenizer.decode(output[0], skip_special_tokens=True)
|
132 |
|
133 |
-
# 移除提示部分
|
134 |
clean_response = full_response.replace(f"<|user|>\n{instruction}\n<|assistant|>", "").strip()
|
135 |
|
136 |
-
# 如果模型生成了多轮对话,只保留第一轮回答
|
137 |
if "<|user|>" in clean_response:
|
138 |
clean_response = clean_response.split("<|user|>")[0].strip()
|
139 |
|
140 |
-
# 如果模型使用其他格式的多轮对话标记
|
141 |
for token in ["<user>", "User:", "Human:"]:
|
142 |
if token in clean_response:
|
143 |
clean_response = clean_response.split(token)[0].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import spaces
|
|
|
111 |
do_sample=True
|
112 |
)
|
113 |
|
|
|
114 |
full_response = response_tokenizer.decode(output[0], skip_special_tokens=True)
|
115 |
|
|
|
116 |
clean_response = full_response.replace(f"<|user|>\n{instruction}\n<|assistant|>", "").strip()
|
117 |
|
|
|
118 |
if "<|user|>" in clean_response:
|
119 |
clean_response = clean_response.split("<|user|>")[0].strip()
|
120 |
|
|
|
121 |
for token in ["<user>", "User:", "Human:"]:
|
122 |
if token in clean_response:
|
123 |
clean_response = clean_response.split(token)[0].strip()
|