Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import spaces
|
@@ -20,7 +36,7 @@ DESCRIPTION = '''
|
|
20 |
|
21 |
LICENSE = """
|
22 |
<div style="font-family: monospace; white-space: pre; margin-top: 20px; line-height: 1.2;">
|
23 |
-
@misc{
|
24 |
title = {JudgeLRM},
|
25 |
url = {https://huggingface.co/nuojohnchen/JudgeLRM-7B},
|
26 |
author = {Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, Bingsheng He},
|
@@ -60,8 +76,8 @@ MODEL_PATHS = {
|
|
60 |
POPULAR_MODELS = [
|
61 |
"Qwen/Qwen2.5-7B-Instruct",
|
62 |
"01-ai/Yi-6B-Chat",
|
63 |
-
"
|
64 |
-
"
|
65 |
]
|
66 |
|
67 |
# Global variables for model and tokenizer
|
@@ -88,31 +104,6 @@ def get_model_path(dropdown_value, custom_value):
|
|
88 |
return custom_value.strip()
|
89 |
return dropdown_value
|
90 |
|
91 |
-
# Function to clean model response
|
92 |
-
def clean_response_text(text):
|
93 |
-
"""Remove conversation markers and other artifacts from model response"""
|
94 |
-
# Remove any <|user|> or <|assistant|> markers and subsequent conversations
|
95 |
-
user_pattern = r'<\|user\|>.*'
|
96 |
-
assistant_pattern = r'<\|assistant\|>.*'
|
97 |
-
|
98 |
-
# Try to clean with regex first (using re.DOTALL to match across lines)
|
99 |
-
cleaned = re.sub(user_pattern, '', text, flags=re.DOTALL)
|
100 |
-
cleaned = re.sub(assistant_pattern, '', cleaned, flags=re.DOTALL)
|
101 |
-
|
102 |
-
# If that didn't work well, try a more aggressive approach
|
103 |
-
if '<|user|>' in cleaned or '<|assistant|>' in cleaned:
|
104 |
-
parts = text.split('<|user|>')
|
105 |
-
if len(parts) > 0:
|
106 |
-
cleaned = parts[0].strip()
|
107 |
-
|
108 |
-
# Remove other common markers
|
109 |
-
markers = ['<user>', '</user>', '<assistant>', '</assistant>',
|
110 |
-
'User:', 'Assistant:', 'Human:', 'AI:']
|
111 |
-
for marker in markers:
|
112 |
-
cleaned = cleaned.replace(marker, '')
|
113 |
-
|
114 |
-
return cleaned.strip()
|
115 |
-
|
116 |
# Function to generate response from a model
|
117 |
def generate_response(instruction, model_path, progress=gr.Progress()):
|
118 |
"""Generate a response from a specified model"""
|
@@ -136,11 +127,22 @@ def generate_response(instruction, model_path, progress=gr.Progress()):
|
|
136 |
do_sample=True
|
137 |
)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
# If the model doesn't use these exact tokens, try to extract just the assistant's response
|
146 |
if clean_response == full_response:
|
@@ -152,9 +154,6 @@ def generate_response(instruction, model_path, progress=gr.Progress()):
|
|
152 |
for token in ["<|assistant|>", "<assistant>", "Assistant:", "A:"]:
|
153 |
clean_response = clean_response.replace(token, "").strip()
|
154 |
|
155 |
-
# Apply additional cleaning to remove conversation markers
|
156 |
-
clean_response = clean_response_text(clean_response)
|
157 |
-
|
158 |
# Clean up resources
|
159 |
del response_model
|
160 |
del response_tokenizer
|
@@ -165,7 +164,7 @@ def generate_response(instruction, model_path, progress=gr.Progress()):
|
|
165 |
except Exception as e:
|
166 |
return f"Error generating response: {str(e)}"
|
167 |
|
168 |
-
@spaces.GPU(duration=
|
169 |
def judge_responses(instruction, response1, response2, model_name, temperature=0.1, max_new_tokens=2048):
|
170 |
"""
|
171 |
Evaluate the quality of two responses
|
@@ -240,15 +239,15 @@ def judge_responses(instruction, response1, response2, model_name, temperature=0
|
|
240 |
|
241 |
yield result
|
242 |
|
243 |
-
@spaces.GPU(duration=
|
244 |
def generate_and_judge(instruction, model_dropdown_1, custom_model_1, model_dropdown_2, custom_model_2, judge_model_name, temperature=0.1, max_new_tokens=2048, progress=gr.Progress()):
|
245 |
"""Generate responses from two models and judge them"""
|
|
|
|
|
246 |
# Determine which model paths to use
|
247 |
model_path_1 = get_model_path(model_dropdown_1, custom_model_1)
|
248 |
model_path_2 = get_model_path(model_dropdown_2, custom_model_2)
|
249 |
|
250 |
-
progress(0, desc="Starting generation process")
|
251 |
-
|
252 |
# Generate responses from both models
|
253 |
progress(0.1, desc=f"Generating response from {model_path_1}")
|
254 |
response1 = generate_response(instruction, model_path_1, progress)
|
@@ -268,14 +267,6 @@ def generate_and_judge(instruction, model_dropdown_1, custom_model_1, model_drop
|
|
268 |
|
269 |
return response1, response2, evaluation_results
|
270 |
|
271 |
-
# Function to process examples for display
|
272 |
-
def process_example_for_display(example):
|
273 |
-
"""Process example data for display in the interface"""
|
274 |
-
instruction = example[0]
|
275 |
-
model1 = example[1]
|
276 |
-
model2 = example[2]
|
277 |
-
return f"**Question:** {instruction}\n\n**Model 1:** {model1}\n\n**Model 2:** {model2}"
|
278 |
-
|
279 |
# Create Gradio interface
|
280 |
with gr.Blocks(fill_height=True, css=css) as demo:
|
281 |
gr.Markdown(DESCRIPTION)
|
@@ -344,36 +335,27 @@ with gr.Blocks(fill_height=True, css=css) as demo:
|
|
344 |
inputs=[auto_instruction, model_dropdown_1, custom_model_1, model_dropdown_2, custom_model_2, auto_model_dropdown, auto_temperature, auto_max_tokens],
|
345 |
outputs=[auto_response1, auto_response2, auto_output]
|
346 |
)
|
347 |
-
|
348 |
-
# Examples for auto-generation with simplified display
|
349 |
auto_examples = [
|
350 |
["Write a short poem about artificial intelligence",
|
351 |
"Qwen/Qwen2.5-7B-Instruct",
|
|
|
|
|
352 |
"01-ai/Yi-6B-Chat"],
|
353 |
["我听说有些人有高血压却没有任何症状。这是真的吗?",
|
354 |
"FreedomIntelligence/Apollo-7B",
|
|
|
|
|
355 |
"openchat/openchat-3.5-0106"]
|
356 |
]
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
for i, example in enumerate(auto_examples):
|
363 |
-
with gr.Row():
|
364 |
-
example_btn = gr.Button(f"Example {i+1}", scale=1)
|
365 |
-
example_display = gr.Markdown(process_example_for_display(example), scale=4)
|
366 |
-
|
367 |
-
# Set up click handler for this example
|
368 |
-
example_btn.click(
|
369 |
-
lambda instruction, model1, model2: [instruction, model1, "", model2, ""],
|
370 |
-
inputs=None,
|
371 |
-
outputs=[auto_instruction, model_dropdown_1, custom_model_1, model_dropdown_2, custom_model_2],
|
372 |
-
_js=f"() => [{repr(example[0])}, {repr(example[1])}, '', {repr(example[2])}, '']"
|
373 |
-
)
|
374 |
|
375 |
# Manual Evaluation tab (now second)
|
376 |
-
with gr.TabItem("Manual Evaluation
|
377 |
with gr.Row():
|
378 |
with gr.Column():
|
379 |
# Model selection
|
|
|
1 |
+
此外,尽管我希望auto_examples的填充如 # Examples for auto-generation
|
2 |
+
auto_examples = [
|
3 |
+
["Write a short poem about artificial intelligence",
|
4 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
5 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
6 |
+
"01-ai/Yi-6B-Chat",
|
7 |
+
"01-ai/Yi-6B-Chat"],
|
8 |
+
["我听说有些人有高血压却没有任何症状。这是真的吗?",
|
9 |
+
"FreedomIntelligence/Apollo-7B",
|
10 |
+
"FreedomIntelligence/Apollo-7B",
|
11 |
+
"microsoft/phi-2",
|
12 |
+
"openchat/openchat-3.5-0106"]
|
13 |
+
]这个所示,但是我希望呈现在前端的case只有instruction/question, model 1, model 2三列,这个可以实现吗
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
import gradio as gr
|
18 |
import os
|
19 |
import spaces
|
|
|
36 |
|
37 |
LICENSE = """
|
38 |
<div style="font-family: monospace; white-space: pre; margin-top: 20px; line-height: 1.2;">
|
39 |
+
@misc{XtraGPT,
|
40 |
title = {JudgeLRM},
|
41 |
url = {https://huggingface.co/nuojohnchen/JudgeLRM-7B},
|
42 |
author = {Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, Bingsheng He},
|
|
|
76 |
POPULAR_MODELS = [
|
77 |
"Qwen/Qwen2.5-7B-Instruct",
|
78 |
"01-ai/Yi-6B-Chat",
|
79 |
+
"FreedomIntelligence/Apollo-7B",
|
80 |
+
"openchat/openchat-3.5-0106"
|
81 |
]
|
82 |
|
83 |
# Global variables for model and tokenizer
|
|
|
104 |
return custom_value.strip()
|
105 |
return dropdown_value
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Function to generate response from a model
|
108 |
def generate_response(instruction, model_path, progress=gr.Progress()):
|
109 |
"""Generate a response from a specified model"""
|
|
|
127 |
do_sample=True
|
128 |
)
|
129 |
|
130 |
+
# 清理响应,移除提示词部分
|
131 |
+
full_response = response_tokenizer.decode(output[0], skip_special_tokens=True)
|
132 |
+
|
133 |
+
# 移除提示部分
|
134 |
+
clean_response = full_response.replace(f"<|user|>\n{instruction}\n<|assistant|>", "").strip()
|
135 |
+
|
136 |
+
# 如果模型生成了多轮对话,只保留第一轮回答
|
137 |
+
if "<|user|>" in clean_response:
|
138 |
+
clean_response = clean_response.split("<|user|>")[0].strip()
|
139 |
+
|
140 |
+
# 如果模型使用其他格式的多轮对话标记
|
141 |
+
for token in ["<user>", "User:", "Human:"]:
|
142 |
+
if token in clean_response:
|
143 |
+
clean_response = clean_response.split(token)[0].strip()
|
144 |
+
|
145 |
+
|
146 |
|
147 |
# If the model doesn't use these exact tokens, try to extract just the assistant's response
|
148 |
if clean_response == full_response:
|
|
|
154 |
for token in ["<|assistant|>", "<assistant>", "Assistant:", "A:"]:
|
155 |
clean_response = clean_response.replace(token, "").strip()
|
156 |
|
|
|
|
|
|
|
157 |
# Clean up resources
|
158 |
del response_model
|
159 |
del response_tokenizer
|
|
|
164 |
except Exception as e:
|
165 |
return f"Error generating response: {str(e)}"
|
166 |
|
167 |
+
@spaces.GPU(duration=200)
|
168 |
def judge_responses(instruction, response1, response2, model_name, temperature=0.1, max_new_tokens=2048):
|
169 |
"""
|
170 |
Evaluate the quality of two responses
|
|
|
239 |
|
240 |
yield result
|
241 |
|
242 |
+
@spaces.GPU(duration=200)
|
243 |
def generate_and_judge(instruction, model_dropdown_1, custom_model_1, model_dropdown_2, custom_model_2, judge_model_name, temperature=0.1, max_new_tokens=2048, progress=gr.Progress()):
|
244 |
"""Generate responses from two models and judge them"""
|
245 |
+
progress(0, desc="Starting generation process")
|
246 |
+
|
247 |
# Determine which model paths to use
|
248 |
model_path_1 = get_model_path(model_dropdown_1, custom_model_1)
|
249 |
model_path_2 = get_model_path(model_dropdown_2, custom_model_2)
|
250 |
|
|
|
|
|
251 |
# Generate responses from both models
|
252 |
progress(0.1, desc=f"Generating response from {model_path_1}")
|
253 |
response1 = generate_response(instruction, model_path_1, progress)
|
|
|
267 |
|
268 |
return response1, response2, evaluation_results
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
# Create Gradio interface
|
271 |
with gr.Blocks(fill_height=True, css=css) as demo:
|
272 |
gr.Markdown(DESCRIPTION)
|
|
|
335 |
inputs=[auto_instruction, model_dropdown_1, custom_model_1, model_dropdown_2, custom_model_2, auto_model_dropdown, auto_temperature, auto_max_tokens],
|
336 |
outputs=[auto_response1, auto_response2, auto_output]
|
337 |
)
|
338 |
+
# Examples for auto-generation
|
|
|
339 |
auto_examples = [
|
340 |
["Write a short poem about artificial intelligence",
|
341 |
"Qwen/Qwen2.5-7B-Instruct",
|
342 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
343 |
+
"01-ai/Yi-6B-Chat",
|
344 |
"01-ai/Yi-6B-Chat"],
|
345 |
["我听说有些人有高血压却没有任何症状。这是真的吗?",
|
346 |
"FreedomIntelligence/Apollo-7B",
|
347 |
+
"FreedomIntelligence/Apollo-7B",
|
348 |
+
"openchat/openchat-3.5-0106",
|
349 |
"openchat/openchat-3.5-0106"]
|
350 |
]
|
351 |
|
352 |
+
gr.Examples(
|
353 |
+
examples=auto_examples,
|
354 |
+
inputs=[auto_instruction, model_dropdown_1, custom_model_1, model_dropdown_2, custom_model_2]
|
355 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
# Manual Evaluation tab (now second)
|
358 |
+
with gr.TabItem("Manual Evaluation (Streaming Output)”):
|
359 |
with gr.Row():
|
360 |
with gr.Column():
|
361 |
# Model selection
|