chatstudent / app.py
nsultan5's picture
Update app.py
f440171 verified
import openai
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from PyPDF2 import PdfReader
#Function to load and process the PDF document
def load_pdf(file):
#Load the PDF usign Langchain's PyPDFLoader
loader=PyPDFLoader(file.name)
documents=loader.load()
return documents
# Summarization function using GPT-4
def summarize_pdf(file,openai_api_key):
#set the openAI API key dynamically
openai.api_key="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"
# Load and process the PDF
documents=load_pdf(file)
# Create embeddings for the documents
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Use Langchain's FAISS Vector Store to store and search the embeddings
vector_store=FAISS.from_documents(documents,embeddings)
# Create a RetrievalQA chain for summarization
llm = ChatOpenAI(model='gpt-40', openai_api_key=openai_api_key) #passing api key here
qa_chain=RetrivalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever()
)
# Query the model for a summary of the document
response = qa_chain.run("Summarize the content of the research paper.")
return response
#Function to handle user queries and provide answers from the document
def query_pdf(file,user_query,openai_api_key):
#set the openai api key dynamically
openai.api_key=openai_api_key
#Load and process the PDF
documents = load_pdf(file)
# Create embeddings for the documents
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Use Langchain's FAISS vector store to store and search the embeddings
vector_store = FAISS.from_documents(documents, embeddings)
# Create a RetrievalQA chain for querying the document
llm=ChatOpenAI(model="gpt-40", openai_api_key=openai_api_key) #passing api key here
qa_chain=RetrivalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever()
)
# Query the model for the user query
response = qa_chain.run(user_query)
return response
# Function to handle user queries and provide answers from the document
def query_pdf(file, user_query, openai_api_key):
# Set the OpenAI API key dynamically
openai.api_key = openai_api_key
# Load and process the PDF
documents = load_pdf(file)
# Create embeddings for the documents
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Use LangChain's FAISS Vector Store to store and search the embeddings
vector_store = FAISS.from_documents(documents, embeddings)
# Create a RetrievalQA chain for querying the document
llm = ChatOpenAI(model="gpt-4o", openai_api_key=openai_api_key) # Passing API key here
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever()
)
# Query the model for the user query
response = qa_chain.run(user_query)
return response
# Define Gradio interface for the summarization
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("### ChatPDF and Research Paper Summarizer using GPT-4 and LangChain")
# Input field for API Key
with gr.Row():
openai_api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="Enter your OpenAI API key here")
with gr.Tab("Summarize PDF"):
with gr.Row():
pdf_file = gr.File(label="Upload PDF Document")
summarize_btn = gr.Button("Summarize")
summary_output = gr.Textbox(label="Summary", interactive=False)
clear_btn_summary = gr.Button("Clear Response")
# Summarize Button Logic
summarize_btn.click(summarize_pdf, inputs=[pdf_file, openai_api_key_input], outputs=summary_output)
# Clear Response Button Logic for Summary Tab
clear_btn_summary.click(lambda: "", inputs=[], outputs=summary_output)
with gr.Tab("Ask Questions"):
with gr.Row():
pdf_file_q = gr.File(label="Upload PDF Document")
user_input = gr.Textbox(label="Enter your question")
answer_output = gr.Textbox(label="Answer", interactive=False)
clear_btn_answer = gr.Button("Clear Response")
# Submit Question Logic
user_input.submit(query_pdf, inputs=[pdf_file_q, user_input, openai_api_key_input], outputs=answer_output)
# Clear Response Button Logic for Answer Tab
clear_btn_answer.click(lambda: "", inputs=[], outputs=answer_output)
user_input.submit(None, None, answer_output) # Clear answer when typing new query
return demo
# Run Gradio app
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(debug=True)