import openai import gradio as gr from langchain.chains import RetrievalQA from langchain.llms import OpenAI from langchain.document_loaders import PyPDFLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from PyPDF2 import PdfReader #Function to load and process the PDF document def load_pdf(file): #Load the PDF usign Langchain's PyPDFLoader loader=PyPDFLoader(file.name) documents=loader.load() return documents # Summarization function using GPT-4 def summarize_pdf(file,openai_api_key): #set the openAI API key dynamically openai.api_key="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" # Load and process the PDF documents=load_pdf(file) # Create embeddings for the documents embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) # Use Langchain's FAISS Vector Store to store and search the embeddings vector_store=FAISS.from_documents(documents,embeddings) # Create a RetrievalQA chain for summarization llm = ChatOpenAI(model='gpt-40', openai_api_key=openai_api_key) #passing api key here qa_chain=RetrivalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever() ) # Query the model for a summary of the document response = qa_chain.run("Summarize the content of the research paper.") return response #Function to handle user queries and provide answers from the document def query_pdf(file,user_query,openai_api_key): #set the openai api key dynamically openai.api_key=openai_api_key #Load and process the PDF documents = load_pdf(file) # Create embeddings for the documents embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) # Use Langchain's FAISS vector store to store and search the embeddings vector_store = FAISS.from_documents(documents, embeddings) # Create a RetrievalQA chain for querying the document llm=ChatOpenAI(model="gpt-40", openai_api_key=openai_api_key) #passing api key here qa_chain=RetrivalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever() ) # Query the model for the user query response = qa_chain.run(user_query) return response # Function to handle user queries and provide answers from the document def query_pdf(file, user_query, openai_api_key): # Set the OpenAI API key dynamically openai.api_key = openai_api_key # Load and process the PDF documents = load_pdf(file) # Create embeddings for the documents embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) # Use LangChain's FAISS Vector Store to store and search the embeddings vector_store = FAISS.from_documents(documents, embeddings) # Create a RetrievalQA chain for querying the document llm = ChatOpenAI(model="gpt-4o", openai_api_key=openai_api_key) # Passing API key here qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever() ) # Query the model for the user query response = qa_chain.run(user_query) return response # Define Gradio interface for the summarization def create_gradio_interface(): with gr.Blocks() as demo: gr.Markdown("### ChatPDF and Research Paper Summarizer using GPT-4 and LangChain") # Input field for API Key with gr.Row(): openai_api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="Enter your OpenAI API key here") with gr.Tab("Summarize PDF"): with gr.Row(): pdf_file = gr.File(label="Upload PDF Document") summarize_btn = gr.Button("Summarize") summary_output = gr.Textbox(label="Summary", interactive=False) clear_btn_summary = gr.Button("Clear Response") # Summarize Button Logic summarize_btn.click(summarize_pdf, inputs=[pdf_file, openai_api_key_input], outputs=summary_output) # Clear Response Button Logic for Summary Tab clear_btn_summary.click(lambda: "", inputs=[], outputs=summary_output) with gr.Tab("Ask Questions"): with gr.Row(): pdf_file_q = gr.File(label="Upload PDF Document") user_input = gr.Textbox(label="Enter your question") answer_output = gr.Textbox(label="Answer", interactive=False) clear_btn_answer = gr.Button("Clear Response") # Submit Question Logic user_input.submit(query_pdf, inputs=[pdf_file_q, user_input, openai_api_key_input], outputs=answer_output) # Clear Response Button Logic for Answer Tab clear_btn_answer.click(lambda: "", inputs=[], outputs=answer_output) user_input.submit(None, None, answer_output) # Clear answer when typing new query return demo # Run Gradio app if __name__ == "__main__": demo = create_gradio_interface() demo.launch(debug=True)