Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import spaces | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import io | |
import base64 | |
from util.utils import ( | |
check_ocr_box, | |
get_yolo_model, | |
get_caption_model_processor, | |
get_som_labeled_img, | |
) | |
from huggingface_hub import snapshot_download | |
# Define repository and local directory | |
repo_id = "microsoft/OmniParser-v2.0" # HF repo | |
local_dir = "weights" # Target local directory | |
# Download the entire repository | |
snapshot_download(repo_id=repo_id, local_dir=local_dir) | |
print(f"Repository downloaded to: {local_dir}") | |
yolo_model = get_yolo_model(model_path="weights/icon_detect/model.pt") | |
caption_model_processor = get_caption_model_processor( | |
model_name="florence2", model_name_or_path="weights/icon_caption" | |
) | |
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2") | |
MARKDOWN = """ | |
# OmniParser V2 for Pure Vision Based General GUI Agent 🔥 | |
<div> | |
<a href="https://arxiv.org/pdf/2408.00203"> | |
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;"> | |
</a> | |
</div> | |
OmniParser is a screen parsing tool to convert general GUI screen to structured elements. | |
""" | |
DEVICE = torch.device("cuda") | |
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16) | |
def process( | |
image_input, box_threshold, iou_threshold, use_paddleocr, imgsz | |
) -> Optional[Image.Image]: | |
# image_save_path = 'imgs/saved_image_demo.png' | |
# image_input.save(image_save_path) | |
# image = Image.open(image_save_path) | |
box_overlay_ratio = image_input.size[0] / 3200 | |
draw_bbox_config = { | |
"text_scale": 0.8 * box_overlay_ratio, | |
"text_thickness": max(int(2 * box_overlay_ratio), 1), | |
"text_padding": max(int(3 * box_overlay_ratio), 1), | |
"thickness": max(int(3 * box_overlay_ratio), 1), | |
} | |
# import pdb; pdb.set_trace() | |
ocr_bbox_rslt, is_goal_filtered = check_ocr_box( | |
image_input, | |
display_img=False, | |
output_bb_format="xyxy", | |
goal_filtering=None, | |
easyocr_args={"paragraph": False, "text_threshold": 0.9}, | |
use_paddleocr=use_paddleocr, | |
) | |
text, ocr_bbox = ocr_bbox_rslt | |
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img( | |
image_input, | |
yolo_model, | |
BOX_TRESHOLD=box_threshold, | |
output_coord_in_ratio=True, | |
ocr_bbox=ocr_bbox, | |
draw_bbox_config=draw_bbox_config, | |
caption_model_processor=caption_model_processor, | |
ocr_text=text, | |
iou_threshold=iou_threshold, | |
imgsz=imgsz, | |
) | |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) | |
print("finish processing") | |
parsed_content_list = "\n".join( | |
[f"icon {i}: " + str(v) for i, v in enumerate(parsed_content_list)] | |
) | |
# parsed_content_list = str(parsed_content_list) | |
return image, str(parsed_content_list) | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(): | |
image_input_component = gr.Image(type="pil", label="Upload image") | |
# set the threshold for removing the bounding boxes with low confidence, default is 0.05 | |
box_threshold_component = gr.Slider( | |
label="Box Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.05 | |
) | |
# set the threshold for removing the bounding boxes with large overlap, default is 0.1 | |
iou_threshold_component = gr.Slider( | |
label="IOU Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1 | |
) | |
use_paddleocr_component = gr.Checkbox(label="Use PaddleOCR", value=True) | |
imgsz_component = gr.Slider( | |
label="Icon Detect Image Size", | |
minimum=640, | |
maximum=1920, | |
step=32, | |
value=640, | |
) | |
submit_button_component = gr.Button(value="Submit", variant="primary") | |
with gr.Column(): | |
image_output_component = gr.Image(type="pil", label="Image Output") | |
text_output_component = gr.Textbox( | |
label="Parsed screen elements", placeholder="Text Output" | |
) | |
gr.Examples( | |
examples=[ | |
["assets/Programme_Officiel.png", 0.05, 0.1, True, 640], | |
], | |
inputs=[ | |
image_input_component, | |
box_threshold_component, | |
iou_threshold_component, | |
use_paddleocr_component, | |
imgsz_component, | |
], | |
outputs=[image_output_component, text_output_component], | |
fn=process, | |
cache_examples=True, | |
) | |
submit_button_component.click( | |
fn=process, | |
inputs=[ | |
image_input_component, | |
box_threshold_component, | |
iou_threshold_component, | |
use_paddleocr_component, | |
imgsz_component, | |
], | |
outputs=[image_output_component, text_output_component], | |
) | |
# demo.launch(debug=False, show_error=True, share=True) | |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0') | |
demo.queue().launch(share=False) | |