File size: 5,236 Bytes
b20c0ea
0ef105d
b20c0ea
 
 
 
 
 
7e39e4c
 
 
 
 
 
 
b20c0ea
 
 
 
 
 
 
 
 
 
 
 
 
7e39e4c
 
 
 
b20c0ea
 
 
eb37efa
b20c0ea
 
 
 
 
 
 
 
 
7e39e4c
 
b20c0ea
8b5dff8
ef66abf
b20c0ea
 
7e39e4c
b20c0ea
 
 
 
 
 
7e39e4c
 
 
 
b20c0ea
 
 
7e39e4c
 
 
 
 
 
 
 
b20c0ea
7e39e4c
 
 
 
 
 
 
 
 
 
 
 
b20c0ea
7e39e4c
 
 
 
b20c0ea
 
 
7e39e4c
b20c0ea
 
 
 
7e39e4c
b20c0ea
 
7e39e4c
 
b20c0ea
 
7e39e4c
 
 
b20c0ea
7e39e4c
 
 
 
 
 
 
b20c0ea
7e39e4c
 
 
 
b20c0ea
b3cd315
 
 
 
b20c0ea
 
 
 
 
7e39e4c
b20c0ea
7e39e4c
b3cd315
 
b20c0ea
 
2d6f12c
 
 
 
 
 
 
 
 
 
 
b3cd315
b20c0ea
c1dc596
7e39e4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from typing import Optional
import spaces
import gradio as gr
import torch
from PIL import Image
import io


import base64
from util.utils import (
    check_ocr_box,
    get_yolo_model,
    get_caption_model_processor,
    get_som_labeled_img,
)

from huggingface_hub import snapshot_download

# Define repository and local directory
repo_id = "microsoft/OmniParser-v2.0"  # HF repo
local_dir = "weights"  # Target local directory

# Download the entire repository
snapshot_download(repo_id=repo_id, local_dir=local_dir)

print(f"Repository downloaded to: {local_dir}")


yolo_model = get_yolo_model(model_path="weights/icon_detect/model.pt")
caption_model_processor = get_caption_model_processor(
    model_name="florence2", model_name_or_path="weights/icon_caption"
)
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")

MARKDOWN = """
# OmniParser V2 for Pure Vision Based General GUI Agent 🔥
<div>
    <a href="https://arxiv.org/pdf/2408.00203">
        <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
    </a>
</div>

OmniParser is a screen parsing tool to convert general GUI screen to structured elements. 
"""

DEVICE = torch.device("cuda")


@spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
    image_input, box_threshold, iou_threshold, use_paddleocr, imgsz
) -> Optional[Image.Image]:
    # image_save_path = 'imgs/saved_image_demo.png'
    # image_input.save(image_save_path)
    # image = Image.open(image_save_path)
    box_overlay_ratio = image_input.size[0] / 3200
    draw_bbox_config = {
        "text_scale": 0.8 * box_overlay_ratio,
        "text_thickness": max(int(2 * box_overlay_ratio), 1),
        "text_padding": max(int(3 * box_overlay_ratio), 1),
        "thickness": max(int(3 * box_overlay_ratio), 1),
    }
    # import pdb; pdb.set_trace()

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
        image_input,
        display_img=False,
        output_bb_format="xyxy",
        goal_filtering=None,
        easyocr_args={"paragraph": False, "text_threshold": 0.9},
        use_paddleocr=use_paddleocr,
    )
    text, ocr_bbox = ocr_bbox_rslt
    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
        image_input,
        yolo_model,
        BOX_TRESHOLD=box_threshold,
        output_coord_in_ratio=True,
        ocr_bbox=ocr_bbox,
        draw_bbox_config=draw_bbox_config,
        caption_model_processor=caption_model_processor,
        ocr_text=text,
        iou_threshold=iou_threshold,
        imgsz=imgsz,
    )
    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print("finish processing")
    parsed_content_list = "\n".join(
        [f"icon {i}: " + str(v) for i, v in enumerate(parsed_content_list)]
    )
    # parsed_content_list = str(parsed_content_list)
    return image, str(parsed_content_list)


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(type="pil", label="Upload image")
            # set the threshold for removing the bounding boxes with low confidence, default is 0.05
            box_threshold_component = gr.Slider(
                label="Box Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.05
            )
            # set the threshold for removing the bounding boxes with large overlap, default is 0.1
            iou_threshold_component = gr.Slider(
                label="IOU Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1
            )
            use_paddleocr_component = gr.Checkbox(label="Use PaddleOCR", value=True)
            imgsz_component = gr.Slider(
                label="Icon Detect Image Size",
                minimum=640,
                maximum=1920,
                step=32,
                value=640,
            )
            submit_button_component = gr.Button(value="Submit", variant="primary")
        with gr.Column():
            image_output_component = gr.Image(type="pil", label="Image Output")
            text_output_component = gr.Textbox(
                label="Parsed screen elements", placeholder="Text Output"
            )

    gr.Examples(
        examples=[
            ["assets/Programme_Officiel.png", 0.05, 0.1, True, 640],
        ],
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component,
            use_paddleocr_component,
            imgsz_component,
        ],
        outputs=[image_output_component, text_output_component],
        fn=process,
        cache_examples=True,
    )

    submit_button_component.click(
        fn=process,
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component,
            use_paddleocr_component,
            imgsz_component,
        ],
        outputs=[image_output_component, text_output_component],
    )

# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)