Spaces:
Running
on
Zero
Running
on
Zero
fix linting
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
from typing import Optional
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
|
9 |
|
10 |
-
import base64
|
11 |
-
from util.utils import
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
from huggingface_hub import snapshot_download
|
16 |
|
@@ -24,8 +26,10 @@ snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
|
24 |
print(f"Repository downloaded to: {local_dir}")
|
25 |
|
26 |
|
27 |
-
yolo_model = get_yolo_model(model_path=
|
28 |
-
caption_model_processor = get_caption_model_processor(
|
|
|
|
|
29 |
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
30 |
|
31 |
MARKDOWN = """
|
@@ -39,61 +43,84 @@ MARKDOWN = """
|
|
39 |
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
|
40 |
"""
|
41 |
|
42 |
-
DEVICE = torch.device(
|
|
|
43 |
|
44 |
@spaces.GPU
|
45 |
@torch.inference_mode()
|
46 |
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
47 |
def process(
|
48 |
-
image_input,
|
49 |
-
box_threshold,
|
50 |
-
iou_threshold,
|
51 |
-
use_paddleocr,
|
52 |
-
imgsz
|
53 |
) -> Optional[Image.Image]:
|
54 |
-
|
55 |
# image_save_path = 'imgs/saved_image_demo.png'
|
56 |
# image_input.save(image_save_path)
|
57 |
# image = Image.open(image_save_path)
|
58 |
box_overlay_ratio = image_input.size[0] / 3200
|
59 |
draw_bbox_config = {
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
}
|
65 |
# import pdb; pdb.set_trace()
|
66 |
|
67 |
-
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
text, ocr_bbox = ocr_bbox_rslt
|
69 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
71 |
-
print(
|
72 |
-
parsed_content_list =
|
|
|
|
|
73 |
# parsed_content_list = str(parsed_content_list)
|
74 |
return image, str(parsed_content_list)
|
75 |
|
|
|
76 |
with gr.Blocks() as demo:
|
77 |
gr.Markdown(MARKDOWN)
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
-
image_input_component = gr.Image(
|
81 |
-
type='pil', label='Upload image')
|
82 |
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
83 |
box_threshold_component = gr.Slider(
|
84 |
-
label=
|
|
|
85 |
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
86 |
iou_threshold_component = gr.Slider(
|
87 |
-
label=
|
88 |
-
|
89 |
-
|
90 |
imgsz_component = gr.Slider(
|
91 |
-
label=
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
with gr.Column():
|
95 |
-
image_output_component = gr.Image(type=
|
96 |
-
text_output_component = gr.Textbox(
|
|
|
|
|
97 |
|
98 |
submit_button_component.click(
|
99 |
fn=process,
|
@@ -102,11 +129,11 @@ with gr.Blocks() as demo:
|
|
102 |
box_threshold_component,
|
103 |
iou_threshold_component,
|
104 |
use_paddleocr_component,
|
105 |
-
imgsz_component
|
106 |
],
|
107 |
-
outputs=[image_output_component, text_output_component]
|
108 |
)
|
109 |
|
110 |
# demo.launch(debug=False, show_error=True, share=True)
|
111 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
112 |
-
demo.queue().launch(share=False)
|
|
|
1 |
from typing import Optional
|
2 |
import spaces
|
3 |
import gradio as gr
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
|
8 |
|
9 |
+
import base64
|
10 |
+
from util.utils import (
|
11 |
+
check_ocr_box,
|
12 |
+
get_yolo_model,
|
13 |
+
get_caption_model_processor,
|
14 |
+
get_som_labeled_img,
|
15 |
+
)
|
16 |
|
17 |
from huggingface_hub import snapshot_download
|
18 |
|
|
|
26 |
print(f"Repository downloaded to: {local_dir}")
|
27 |
|
28 |
|
29 |
+
yolo_model = get_yolo_model(model_path="weights/icon_detect/model.pt")
|
30 |
+
caption_model_processor = get_caption_model_processor(
|
31 |
+
model_name="florence2", model_name_or_path="weights/icon_caption"
|
32 |
+
)
|
33 |
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
34 |
|
35 |
MARKDOWN = """
|
|
|
43 |
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
|
44 |
"""
|
45 |
|
46 |
+
DEVICE = torch.device("cuda")
|
47 |
+
|
48 |
|
49 |
@spaces.GPU
|
50 |
@torch.inference_mode()
|
51 |
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
52 |
def process(
|
53 |
+
image_input, box_threshold, iou_threshold, use_paddleocr, imgsz
|
|
|
|
|
|
|
|
|
54 |
) -> Optional[Image.Image]:
|
|
|
55 |
# image_save_path = 'imgs/saved_image_demo.png'
|
56 |
# image_input.save(image_save_path)
|
57 |
# image = Image.open(image_save_path)
|
58 |
box_overlay_ratio = image_input.size[0] / 3200
|
59 |
draw_bbox_config = {
|
60 |
+
"text_scale": 0.8 * box_overlay_ratio,
|
61 |
+
"text_thickness": max(int(2 * box_overlay_ratio), 1),
|
62 |
+
"text_padding": max(int(3 * box_overlay_ratio), 1),
|
63 |
+
"thickness": max(int(3 * box_overlay_ratio), 1),
|
64 |
}
|
65 |
# import pdb; pdb.set_trace()
|
66 |
|
67 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
68 |
+
image_input,
|
69 |
+
display_img=False,
|
70 |
+
output_bb_format="xyxy",
|
71 |
+
goal_filtering=None,
|
72 |
+
easyocr_args={"paragraph": False, "text_threshold": 0.9},
|
73 |
+
use_paddleocr=use_paddleocr,
|
74 |
+
)
|
75 |
text, ocr_bbox = ocr_bbox_rslt
|
76 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
77 |
+
image_input,
|
78 |
+
yolo_model,
|
79 |
+
BOX_TRESHOLD=box_threshold,
|
80 |
+
output_coord_in_ratio=True,
|
81 |
+
ocr_bbox=ocr_bbox,
|
82 |
+
draw_bbox_config=draw_bbox_config,
|
83 |
+
caption_model_processor=caption_model_processor,
|
84 |
+
ocr_text=text,
|
85 |
+
iou_threshold=iou_threshold,
|
86 |
+
imgsz=imgsz,
|
87 |
+
)
|
88 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
89 |
+
print("finish processing")
|
90 |
+
parsed_content_list = "\n".join(
|
91 |
+
[f"icon {i}: " + str(v) for i, v in enumerate(parsed_content_list)]
|
92 |
+
)
|
93 |
# parsed_content_list = str(parsed_content_list)
|
94 |
return image, str(parsed_content_list)
|
95 |
|
96 |
+
|
97 |
with gr.Blocks() as demo:
|
98 |
gr.Markdown(MARKDOWN)
|
99 |
with gr.Row():
|
100 |
with gr.Column():
|
101 |
+
image_input_component = gr.Image(type="pil", label="Upload image")
|
|
|
102 |
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
103 |
box_threshold_component = gr.Slider(
|
104 |
+
label="Box Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.05
|
105 |
+
)
|
106 |
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
107 |
iou_threshold_component = gr.Slider(
|
108 |
+
label="IOU Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1
|
109 |
+
)
|
110 |
+
use_paddleocr_component = gr.Checkbox(label="Use PaddleOCR", value=True)
|
111 |
imgsz_component = gr.Slider(
|
112 |
+
label="Icon Detect Image Size",
|
113 |
+
minimum=640,
|
114 |
+
maximum=1920,
|
115 |
+
step=32,
|
116 |
+
value=640,
|
117 |
+
)
|
118 |
+
submit_button_component = gr.Button(value="Submit", variant="primary")
|
119 |
with gr.Column():
|
120 |
+
image_output_component = gr.Image(type="pil", label="Image Output")
|
121 |
+
text_output_component = gr.Textbox(
|
122 |
+
label="Parsed screen elements", placeholder="Text Output"
|
123 |
+
)
|
124 |
|
125 |
submit_button_component.click(
|
126 |
fn=process,
|
|
|
129 |
box_threshold_component,
|
130 |
iou_threshold_component,
|
131 |
use_paddleocr_component,
|
132 |
+
imgsz_component,
|
133 |
],
|
134 |
+
outputs=[image_output_component, text_output_component],
|
135 |
)
|
136 |
|
137 |
# demo.launch(debug=False, show_error=True, share=True)
|
138 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
139 |
+
demo.queue().launch(share=False)
|