OmniParser-v2 / app.py
not-lain's picture
fix linting
7e39e4c
raw
history blame
4.8 kB
from typing import Optional
import spaces
import gradio as gr
import torch
from PIL import Image
import io
import base64
from util.utils import (
check_ocr_box,
get_yolo_model,
get_caption_model_processor,
get_som_labeled_img,
)
from huggingface_hub import snapshot_download
# Define repository and local directory
repo_id = "microsoft/OmniParser-v2.0" # HF repo
local_dir = "weights" # Target local directory
# Download the entire repository
snapshot_download(repo_id=repo_id, local_dir=local_dir)
print(f"Repository downloaded to: {local_dir}")
yolo_model = get_yolo_model(model_path="weights/icon_detect/model.pt")
caption_model_processor = get_caption_model_processor(
model_name="florence2", model_name_or_path="weights/icon_caption"
)
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
MARKDOWN = """
# OmniParser V2 for Pure Vision Based General GUI Agent 🔥
<div>
<a href="https://arxiv.org/pdf/2408.00203">
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
</a>
</div>
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
"""
DEVICE = torch.device("cuda")
@spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
image_input, box_threshold, iou_threshold, use_paddleocr, imgsz
) -> Optional[Image.Image]:
# image_save_path = 'imgs/saved_image_demo.png'
# image_input.save(image_save_path)
# image = Image.open(image_save_path)
box_overlay_ratio = image_input.size[0] / 3200
draw_bbox_config = {
"text_scale": 0.8 * box_overlay_ratio,
"text_thickness": max(int(2 * box_overlay_ratio), 1),
"text_padding": max(int(3 * box_overlay_ratio), 1),
"thickness": max(int(3 * box_overlay_ratio), 1),
}
# import pdb; pdb.set_trace()
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
image_input,
display_img=False,
output_bb_format="xyxy",
goal_filtering=None,
easyocr_args={"paragraph": False, "text_threshold": 0.9},
use_paddleocr=use_paddleocr,
)
text, ocr_bbox = ocr_bbox_rslt
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
image_input,
yolo_model,
BOX_TRESHOLD=box_threshold,
output_coord_in_ratio=True,
ocr_bbox=ocr_bbox,
draw_bbox_config=draw_bbox_config,
caption_model_processor=caption_model_processor,
ocr_text=text,
iou_threshold=iou_threshold,
imgsz=imgsz,
)
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
print("finish processing")
parsed_content_list = "\n".join(
[f"icon {i}: " + str(v) for i, v in enumerate(parsed_content_list)]
)
# parsed_content_list = str(parsed_content_list)
return image, str(parsed_content_list)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(type="pil", label="Upload image")
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
box_threshold_component = gr.Slider(
label="Box Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.05
)
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
iou_threshold_component = gr.Slider(
label="IOU Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1
)
use_paddleocr_component = gr.Checkbox(label="Use PaddleOCR", value=True)
imgsz_component = gr.Slider(
label="Icon Detect Image Size",
minimum=640,
maximum=1920,
step=32,
value=640,
)
submit_button_component = gr.Button(value="Submit", variant="primary")
with gr.Column():
image_output_component = gr.Image(type="pil", label="Image Output")
text_output_component = gr.Textbox(
label="Parsed screen elements", placeholder="Text Output"
)
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
use_paddleocr_component,
imgsz_component,
],
outputs=[image_output_component, text_output_component],
)
# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)