File size: 6,030 Bytes
9ac410d 88d066d b65c592 2955054 b1ed479 2955054 b1ed479 4e89574 b1ed479 4e89574 b1ed479 2955054 b1ed479 0274b27 7045659 4e89574 7b3f010 7c7aa59 a1c7830 5196b87 50f674a 9f7e85b 0b36569 4fae0db 9f7e85b 44aa9f0 7c7aa59 44aa9f0 784e033 a106d41 784e033 7c7aa59 7b149ac 4e89574 7c7aa59 7b149ac 7c7aa59 7b149ac 4e89574 7045659 3e06760 7045659 6ae6756 7c7aa59 0b36569 3e06760 50f674a 3e06760 0b36569 4fae0db 3e06760 784e033 3e06760 50f674a 3e06760 50f674a 3e06760 50f674a 3e06760 0b36569 04ccb1c 784e033 04ccb1c eea17f0 99f18bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px
with st.sidebar:
st.button("DEMO APP", type="primary")
expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
expander.write('''
**Supported File Formats**
This app accepts files in .pdf formats.
**How to Use**
Paste the job description first. Then, upload the resume of each applicant to retrieve the results. At the bottom of the app, you could upload each applicant's resume to visualize their profile as a treemap chart as well as the results in a matrix heatmap.
**Usage Limits**
You can request results up to 20 times in total.
**Subscription Management**
This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
**Customization**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**File Handling and Errors**
The app may display an error message if your file is corrupt, or has other errors.
For any errors or inquiries, please contact us at [email protected]
''')
st.title("AI Resume Analysis based on Keywords App")
st.divider()
st.subheader("Job Description", divider="red")
txt = st.text_area("Paste the job description and then press Ctrl + Enter", key="text 1")
job = pd.Series(txt, name="Text")
st.subheader("Applicant Resume 1", divider="green")
if 'upload_count' not in st.session_state:
st.session_state['upload_count'] = 0
max_attempts = 20
if st.session_state['upload_count'] < max_attempts:
uploaded_files = st.file_uploader("Upload Applicant's 1 resume", type="pdf", key="candidate 1")
if uploaded_files:
st.session_state['upload_count'] += 1
pdf_reader = PdfReader(uploaded_files)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
with st.expander("See Applicant'1 resume"):
st.write(text_data)
data = pd.Series(text_data, name='Text')
frames = [job, data]
result = pd.concat(frames)
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(result)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
with st.popover("See result"):
st.write(f"Similarity of job description with Applicant's 1 resume based on keywords: {similarity_score:.2f}")
st.info(
"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's 1 resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's 1 resume and job description.")
else:
st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
st.subheader("Job Description", divider="red")
txt = st.text_area("Paste the job description and then press Ctrl + Enter", key="text 2")
job = pd.Series(txt, name="Text")
st.subheader("Applicant Resume 2", divider="green")
if 'upload_count' not in st.session_state:
st.session_state['upload_count'] = 0
max_attempts = 20
if st.session_state['upload_count'] < max_attempts:
uploaded_files = st.file_uploader("Upload Applicant's 2 resume", type="pdf", key="candidate 2")
if uploaded_files:
st.session_state['upload_count'] += 1
pdf_reader = PdfReader(uploaded_files)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
with st.expander("See Applicant'2 resume"):
st.write(text_data)
data = pd.Series(text_data, name='Text')
frames = [job, data]
result = pd.concat(frames)
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(result)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
with st.popover("See result"):
st.write(f"Similarity of job description with Applicant's 2 resume based on keywords: {similarity_score:.2f}")
st.info(
"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's 2 resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's 2 resume and job description.")
else:
st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|