File size: 6,030 Bytes
9ac410d
 
 
 
 
88d066d
b65c592
2955054
b1ed479
 
 
 
2955054
b1ed479
 
 
 
 
 
 
4e89574
b1ed479
 
4e89574
b1ed479
 
2955054
b1ed479
 
 
 
 
 
 
 
 
 
 
 
 
 
0274b27
7045659
4e89574
7b3f010
7c7aa59
 
a1c7830
5196b87
50f674a
9f7e85b
 
0b36569
4fae0db
9f7e85b
44aa9f0
7c7aa59
 
44aa9f0
 
 
 
 
784e033
a106d41
784e033
7c7aa59
7b149ac
 
4e89574
7c7aa59
7b149ac
 
 
 
 
7c7aa59
7b149ac
4e89574
7045659
3e06760
7045659
6ae6756
7c7aa59
 
 
0b36569
 
 
 
3e06760
 
 
 
50f674a
3e06760
 
0b36569
4fae0db
3e06760
 
 
 
784e033
3e06760
 
 
 
 
 
 
 
 
 
50f674a
 
3e06760
 
 
 
 
50f674a
3e06760
 
 
 
50f674a
3e06760
 
 
 
0b36569
 
04ccb1c
784e033
04ccb1c
 
 
 
 
eea17f0
 
 
 
 
 
 
99f18bc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px

with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
    expander.write('''
    
    
     **Supported File Formats**
    This app accepts files in .pdf formats.
    
    **How to Use**
    Paste the job description first. Then, upload the resume of each applicant to retrieve the results. At the bottom of the app, you could upload each applicant's resume to visualize their profile as a treemap chart as well as the results in a matrix heatmap. 
    
    **Usage Limits**
    You can request results up to 20 times in total.
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')


st.title("AI Resume Analysis based on Keywords App")
st.divider()

st.subheader("Job Description", divider="red")
txt = st.text_area("Paste the job description and then press Ctrl + Enter", key="text 1")
job = pd.Series(txt, name="Text")

st.subheader("Applicant Resume 1", divider="green")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0

max_attempts = 20
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader("Upload Applicant's 1 resume", type="pdf", key="candidate 1")
    if uploaded_files:
        st.session_state['upload_count'] += 1
        
        pdf_reader = PdfReader(uploaded_files)
        text_data = ""
        for page in pdf_reader.pages:
            text_data += page.extract_text()
            with st.expander("See Applicant'1 resume"):
                st.write(text_data)
            
            data = pd.Series(text_data, name='Text')
            frames = [job, data]
            result = pd.concat(frames)
            

            vectorizer = TfidfVectorizer()
            tfidf_matrix = vectorizer.fit_transform(result)
            tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
            cosine_sim_matrix = cosine_similarity(tfidf_matrix)
            cosine_sim_df = pd.DataFrame(cosine_sim_matrix)

            for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                with st.popover("See result"):
                    st.write(f"Similarity of job description with Applicant's 1 resume based on keywords: {similarity_score:.2f}")
                    st.info(
                    "A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's 1 resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's 1 resume and job description.")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
    if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
        st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")




st.subheader("Job Description", divider="red")
txt = st.text_area("Paste the job description and then press Ctrl + Enter", key="text 2")
job = pd.Series(txt, name="Text")

st.subheader("Applicant Resume 2", divider="green")
if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0

max_attempts = 20
if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader("Upload Applicant's 2 resume", type="pdf", key="candidate 2")
    if uploaded_files:
        st.session_state['upload_count'] += 1
        
        pdf_reader = PdfReader(uploaded_files)
        text_data = ""
        for page in pdf_reader.pages:
            text_data += page.extract_text()
            with st.expander("See Applicant'2 resume"):
                st.write(text_data)
            
            data = pd.Series(text_data, name='Text')
            frames = [job, data]
            result = pd.concat(frames)
            

            vectorizer = TfidfVectorizer()
            tfidf_matrix = vectorizer.fit_transform(result)
            tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
            cosine_sim_matrix = cosine_similarity(tfidf_matrix)
            cosine_sim_df = pd.DataFrame(cosine_sim_matrix)

            for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
                with st.popover("See result"):
                    st.write(f"Similarity of job description with Applicant's 2 resume based on keywords: {similarity_score:.2f}")
                    st.info(
                    "A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's 2 resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's 2 resume and job description.")
else:
    st.warning(f"You have reached the maximum upload attempts ({max_attempts}).")
    if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
        st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")