Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# Load the model and tokenizer using Hugging Face | |
model_name = "microsoft/Phi-3-mini-4k-instruct" | |
#model_name = "KingNish/Qwen2.5-0.5b-Test-ft" | |
# Explicitly load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
# Create the pipeline | |
#chatbot = pipeline("text-generation", model="KingNish/Qwen2.5-0.5b-Test-ft", trust_remote_code=True) | |
chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, framework="pt") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Combine system message and conversation history | |
prompt=message | |
#prompt = system_message + "\n" | |
#prompt += f"User: {message}\n\nBot:" | |
# Generate the response using the model | |
response = chatbot(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p)[0]['generated_text'] | |
return response | |
# Define the Gradio interface with additional inputs | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |