Spaces:
Sleeping
Sleeping
File size: 1,639 Bytes
621fcdc 2b864f4 621fcdc d8e0d61 621fcdc d8e0d61 621fcdc 2b864f4 621fcdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer using Hugging Face
model_name = "microsoft/Phi-3-mini-4k-instruct"
#model_name = "KingNish/Qwen2.5-0.5b-Test-ft"
# Explicitly load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# Create the pipeline
#chatbot = pipeline("text-generation", model="KingNish/Qwen2.5-0.5b-Test-ft", trust_remote_code=True)
chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, framework="pt")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Combine system message and conversation history
prompt=message
#prompt = system_message + "\n"
#prompt += f"User: {message}\n\nBot:"
# Generate the response using the model
response = chatbot(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p)[0]['generated_text']
return response
# Define the Gradio interface with additional inputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
|