Spaces:
Runtime error
Runtime error
Upload app_new.py
Browse files- app_new.py +492 -0
app_new.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from typing import List, Callable
|
10 |
+
import glob
|
11 |
+
from tqdm import tqdm
|
12 |
+
import pickle
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from llama_cpp import Llama
|
15 |
+
import streamlit as st
|
16 |
+
import functools
|
17 |
+
from datetime import datetime
|
18 |
+
import re
|
19 |
+
import time
|
20 |
+
import requests
|
21 |
+
|
22 |
+
# Force CPU device
|
23 |
+
torch.device('cpu')
|
24 |
+
|
25 |
+
# Logging configuration
|
26 |
+
LOGGING_CONFIG = {
|
27 |
+
'enabled': True,
|
28 |
+
'functions': {
|
29 |
+
'encode': True,
|
30 |
+
'store_embeddings': True,
|
31 |
+
'search': True,
|
32 |
+
'load_and_process_csvs': True,
|
33 |
+
'process_query': True
|
34 |
+
}
|
35 |
+
}
|
36 |
+
@st.cache_data
|
37 |
+
def load_from_drive(file_id: str):
|
38 |
+
"""Load pickle file directly from Google Drive"""
|
39 |
+
try:
|
40 |
+
# Direct download URL for Google Drive
|
41 |
+
url = f"https://drive.google.com/uc?id={file_id}&export=download"
|
42 |
+
|
43 |
+
# First request to get the confirmation token
|
44 |
+
session = requests.Session()
|
45 |
+
response = session.get(url, stream=True)
|
46 |
+
|
47 |
+
# Check if we need to confirm download
|
48 |
+
for key, value in response.cookies.items():
|
49 |
+
if key.startswith('download_warning'):
|
50 |
+
# Add confirmation parameter to the URL
|
51 |
+
url = f"{url}&confirm={value}"
|
52 |
+
response = session.get(url, stream=True)
|
53 |
+
break
|
54 |
+
|
55 |
+
# Load the content and convert to pickle
|
56 |
+
content = response.content
|
57 |
+
print(f"Successfully downloaded {len(content)} bytes")
|
58 |
+
return pickle.loads(content)
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Detailed error: {str(e)}") # This will help debug
|
62 |
+
st.error(f"Error loading file from Drive: {str(e)}")
|
63 |
+
return None
|
64 |
+
|
65 |
+
def log_function(func: Callable) -> Callable:
|
66 |
+
"""Decorator to log function inputs and outputs"""
|
67 |
+
@functools.wraps(func)
|
68 |
+
def wrapper(*args, **kwargs):
|
69 |
+
if not LOGGING_CONFIG['enabled'] or not LOGGING_CONFIG['functions'].get(func.__name__, False):
|
70 |
+
return func(*args, **kwargs)
|
71 |
+
|
72 |
+
if args and hasattr(args[0], '__class__'):
|
73 |
+
class_name = args[0].__class__.__name__
|
74 |
+
else:
|
75 |
+
class_name = func.__module__
|
76 |
+
|
77 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
|
78 |
+
log_args = args[1:] if class_name != func.__module__ else args
|
79 |
+
|
80 |
+
def format_arg(arg):
|
81 |
+
if isinstance(arg, torch.Tensor):
|
82 |
+
return f"Tensor(shape={list(arg.shape)}, device={arg.device})"
|
83 |
+
elif isinstance(arg, list):
|
84 |
+
return f"List(len={len(arg)})"
|
85 |
+
elif isinstance(arg, str) and len(arg) > 100:
|
86 |
+
return f"String(len={len(arg)}): {arg[:100]}..."
|
87 |
+
return arg
|
88 |
+
|
89 |
+
formatted_args = [format_arg(arg) for arg in log_args]
|
90 |
+
formatted_kwargs = {k: format_arg(v) for k, v in kwargs.items()}
|
91 |
+
|
92 |
+
print(f"\n{'='*80}")
|
93 |
+
print(f"[{timestamp}] FUNCTION CALL: {class_name}.{func.__name__}")
|
94 |
+
print(f"INPUTS:")
|
95 |
+
print(f" args: {formatted_args}")
|
96 |
+
print(f" kwargs: {formatted_kwargs}")
|
97 |
+
|
98 |
+
result = func(*args, **kwargs)
|
99 |
+
|
100 |
+
formatted_result = format_arg(result)
|
101 |
+
print(f"OUTPUT:")
|
102 |
+
print(f" {formatted_result}")
|
103 |
+
print(f"{'='*80}\n")
|
104 |
+
|
105 |
+
return result
|
106 |
+
return wrapper
|
107 |
+
|
108 |
+
def check_environment():
|
109 |
+
"""Check if the environment is properly set up"""
|
110 |
+
try:
|
111 |
+
import numpy as np
|
112 |
+
import torch
|
113 |
+
import sentence_transformers
|
114 |
+
import llama_cpp
|
115 |
+
return True
|
116 |
+
except ImportError as e:
|
117 |
+
st.error(f"Missing required package: {str(e)}")
|
118 |
+
st.stop()
|
119 |
+
return False
|
120 |
+
|
121 |
+
@st.cache_resource
|
122 |
+
def initialize_model():
|
123 |
+
"""Initialize the Llama model once"""
|
124 |
+
#model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
125 |
+
model_path = "mistralai/Mistral-7B-v0.1"
|
126 |
+
if not os.path.exists(model_path):
|
127 |
+
st.error(f"Model file {model_path} not found!")
|
128 |
+
st.stop()
|
129 |
+
|
130 |
+
llm_config = {
|
131 |
+
"n_ctx": 2048,
|
132 |
+
"n_threads": 4,
|
133 |
+
"n_batch": 512,
|
134 |
+
"n_gpu_layers": 0,
|
135 |
+
"verbose": False
|
136 |
+
}
|
137 |
+
|
138 |
+
return Llama(model_path=model_path, **llm_config)
|
139 |
+
|
140 |
+
|
141 |
+
class SentenceTransformerRetriever:
|
142 |
+
@st.cache_resource
|
143 |
+
def __init__(_self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", cache_dir: str = "embeddings_cache"):
|
144 |
+
# Force CPU device and suppress warnings
|
145 |
+
with warnings.catch_warnings():
|
146 |
+
warnings.simplefilter("ignore")
|
147 |
+
_self.device = torch.device("cpu")
|
148 |
+
_self.model = SentenceTransformer(model_name, device="cpu")
|
149 |
+
_self.doc_embeddings = None
|
150 |
+
_self.cache_dir = cache_dir
|
151 |
+
_self.cache_file = "embeddings.pkl"
|
152 |
+
os.makedirs(cache_dir, exist_ok=True)
|
153 |
+
|
154 |
+
def get_cache_path(self, data_folder: str = None) -> str:
|
155 |
+
return os.path.join(self.cache_dir, self.cache_file)
|
156 |
+
|
157 |
+
@log_function
|
158 |
+
def save_cache(self, data_folder: str, cache_data: dict):
|
159 |
+
cache_path = self.get_cache_path()
|
160 |
+
if os.path.exists(cache_path):
|
161 |
+
os.remove(cache_path)
|
162 |
+
with open(cache_path, 'wb') as f:
|
163 |
+
pickle.dump(cache_data, f)
|
164 |
+
print(f"Cache saved at: {cache_path}")
|
165 |
+
|
166 |
+
@log_function
|
167 |
+
@st.cache_data
|
168 |
+
def load_cache(_self, data_folder: str = None) -> dict:
|
169 |
+
cache_path = _self.get_cache_path()
|
170 |
+
if os.path.exists(cache_path):
|
171 |
+
with open(cache_path, 'rb') as f:
|
172 |
+
print(f"Loading cache from: {cache_path}")
|
173 |
+
return pickle.load(f)
|
174 |
+
return None
|
175 |
+
|
176 |
+
@log_function
|
177 |
+
def encode(self, texts: List[str], batch_size: int = 32) -> torch.Tensor:
|
178 |
+
embeddings = self.model.encode(texts, batch_size=batch_size, convert_to_tensor=True, show_progress_bar=True)
|
179 |
+
return F.normalize(embeddings, p=2, dim=1)
|
180 |
+
|
181 |
+
@log_function
|
182 |
+
def store_embeddings(self, embeddings: torch.Tensor):
|
183 |
+
self.doc_embeddings = embeddings
|
184 |
+
|
185 |
+
@log_function
|
186 |
+
def search(self, query_embedding: torch.Tensor, k: int, documents: List[str]):
|
187 |
+
if self.doc_embeddings is None:
|
188 |
+
raise ValueError("No document embeddings stored!")
|
189 |
+
|
190 |
+
# Compute similarities
|
191 |
+
similarities = F.cosine_similarity(query_embedding, self.doc_embeddings)
|
192 |
+
|
193 |
+
# Get top k scores and indices
|
194 |
+
k = min(k, len(documents))
|
195 |
+
scores, indices = torch.topk(similarities, k=k)
|
196 |
+
|
197 |
+
# Log similarity statistics
|
198 |
+
print(f"\nSimilarity Stats:")
|
199 |
+
print(f"Max similarity: {similarities.max().item():.4f}")
|
200 |
+
print(f"Mean similarity: {similarities.mean().item():.4f}")
|
201 |
+
print(f"Selected similarities: {scores.tolist()}")
|
202 |
+
|
203 |
+
return indices.cpu(), scores.cpu()
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
class RAGPipeline:
|
209 |
+
def __init__(self, data_folder: str, k: int = 5):
|
210 |
+
self.data_folder = data_folder
|
211 |
+
self.k = k
|
212 |
+
self.retriever = SentenceTransformerRetriever()
|
213 |
+
self.documents = []
|
214 |
+
self.device = torch.device("cpu")
|
215 |
+
self.llm = initialize_model()
|
216 |
+
|
217 |
+
@log_function
|
218 |
+
@st.cache_data
|
219 |
+
def load_and_process_csvs(_self):
|
220 |
+
cache_data = _self.retriever.load_cache(_self.data_folder)
|
221 |
+
if cache_data is not None:
|
222 |
+
_self.documents = cache_data['documents']
|
223 |
+
_self.retriever.store_embeddings(cache_data['embeddings'])
|
224 |
+
return
|
225 |
+
|
226 |
+
csv_files = glob.glob(os.path.join(_self.data_folder, "*.csv"))
|
227 |
+
all_documents = []
|
228 |
+
|
229 |
+
for csv_file in tqdm(csv_files, desc="Reading CSV files"):
|
230 |
+
try:
|
231 |
+
df = pd.read_csv(csv_file)
|
232 |
+
texts = df.apply(lambda x: " ".join(x.astype(str)), axis=1).tolist()
|
233 |
+
all_documents.extend(texts)
|
234 |
+
except Exception as e:
|
235 |
+
print(f"Error processing file {csv_file}: {e}")
|
236 |
+
continue
|
237 |
+
|
238 |
+
_self.documents = all_documents
|
239 |
+
embeddings = _self.retriever.encode(all_documents)
|
240 |
+
_self.retriever.store_embeddings(embeddings)
|
241 |
+
|
242 |
+
cache_data = {
|
243 |
+
'embeddings': embeddings,
|
244 |
+
'documents': _self.documents
|
245 |
+
}
|
246 |
+
_self.retriever.save_cache(_self.data_folder, cache_data)
|
247 |
+
|
248 |
+
def preprocess_query(self, query: str) -> str:
|
249 |
+
"""Clean and prepare the query"""
|
250 |
+
query = query.lower().strip()
|
251 |
+
query = re.sub(r'\s+', ' ', query)
|
252 |
+
return query
|
253 |
+
|
254 |
+
def postprocess_response(self, response: str) -> str:
|
255 |
+
"""Clean up the generated response"""
|
256 |
+
response = response.strip()
|
257 |
+
response = re.sub(r'\s+', ' ', response)
|
258 |
+
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
259 |
+
return response
|
260 |
+
|
261 |
+
@log_function
|
262 |
+
def process_query(self, query: str, placeholder) -> str:
|
263 |
+
try:
|
264 |
+
# Preprocess query
|
265 |
+
query = self.preprocess_query(query)
|
266 |
+
|
267 |
+
# Show retrieval status
|
268 |
+
status = placeholder.empty()
|
269 |
+
status.write("π Finding relevant information...")
|
270 |
+
|
271 |
+
# Retrieve relevant documents
|
272 |
+
query_embedding = self.retriever.encode([query])
|
273 |
+
indices, scores = self.retriever.search(query_embedding, self.k, self.documents)
|
274 |
+
|
275 |
+
# Print search results for debugging
|
276 |
+
print("\nSearch Results:")
|
277 |
+
for idx, score in zip(indices.tolist(), scores.tolist()):
|
278 |
+
print(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
279 |
+
|
280 |
+
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
281 |
+
|
282 |
+
# Update status
|
283 |
+
status.write("π Generating response...")
|
284 |
+
|
285 |
+
# Prepare context and prompt
|
286 |
+
context = "\n".join(relevant_docs)
|
287 |
+
prompt = f"""Context information is below:
|
288 |
+
{context}
|
289 |
+
|
290 |
+
Given the context above, please answer the following question:
|
291 |
+
{query}
|
292 |
+
|
293 |
+
Guidelines:
|
294 |
+
- If you cannot answer based on the context, say so politely
|
295 |
+
- Keep the response concise and focused
|
296 |
+
- Only include sports-related information
|
297 |
+
- No dates or timestamps in the response
|
298 |
+
- Use clear, natural language
|
299 |
+
|
300 |
+
Answer:"""
|
301 |
+
|
302 |
+
# Generate response
|
303 |
+
response_placeholder = placeholder.empty()
|
304 |
+
generated_text = ""
|
305 |
+
|
306 |
+
try:
|
307 |
+
response = self.llm(
|
308 |
+
prompt,
|
309 |
+
max_tokens=512,
|
310 |
+
temperature=0.4,
|
311 |
+
top_p=0.95,
|
312 |
+
echo=False,
|
313 |
+
stop=["Question:", "\n\n"]
|
314 |
+
)
|
315 |
+
|
316 |
+
if response and 'choices' in response and len(response['choices']) > 0:
|
317 |
+
generated_text = response['choices'][0].get('text', '').strip()
|
318 |
+
|
319 |
+
if generated_text:
|
320 |
+
final_response = self.postprocess_response(generated_text)
|
321 |
+
response_placeholder.markdown(final_response)
|
322 |
+
return final_response
|
323 |
+
else:
|
324 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
325 |
+
response_placeholder.warning(message)
|
326 |
+
return message
|
327 |
+
else:
|
328 |
+
message = "Unable to generate response. Please try again."
|
329 |
+
response_placeholder.warning(message)
|
330 |
+
return message
|
331 |
+
|
332 |
+
except Exception as e:
|
333 |
+
print(f"Generation error: {str(e)}")
|
334 |
+
message = "Had some trouble generating the response. Please try again."
|
335 |
+
response_placeholder.warning(message)
|
336 |
+
return message
|
337 |
+
|
338 |
+
except Exception as e:
|
339 |
+
print(f"Process error: {str(e)}")
|
340 |
+
message = "Something went wrong. Please try again with a different question."
|
341 |
+
placeholder.warning(message)
|
342 |
+
return message
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
@st.cache_resource
|
347 |
+
def initialize_rag_pipeline():
|
348 |
+
"""Initialize the RAG pipeline once"""
|
349 |
+
data_folder = "ESPN_data" # Update this path as needed
|
350 |
+
rag = RAGPipeline(data_folder)
|
351 |
+
rag.load_and_process_csvs()
|
352 |
+
return rag
|
353 |
+
|
354 |
+
def main():
|
355 |
+
# Environment check
|
356 |
+
if not check_environment():
|
357 |
+
return
|
358 |
+
|
359 |
+
# Page config
|
360 |
+
st.set_page_config(
|
361 |
+
page_title="The Sport Chatbot",
|
362 |
+
page_icon="π",
|
363 |
+
layout="wide" # Changed back to wide for more space
|
364 |
+
)
|
365 |
+
|
366 |
+
# Improved CSS styling
|
367 |
+
st.markdown("""
|
368 |
+
<style>
|
369 |
+
/* Container styling */
|
370 |
+
.block-container {
|
371 |
+
padding-top: 2rem;
|
372 |
+
padding-bottom: 2rem;
|
373 |
+
}
|
374 |
+
|
375 |
+
/* Text input styling */
|
376 |
+
.stTextInput > div > div > input {
|
377 |
+
width: 100%;
|
378 |
+
}
|
379 |
+
|
380 |
+
/* Button styling */
|
381 |
+
.stButton > button {
|
382 |
+
width: 200px;
|
383 |
+
margin: 0 auto;
|
384 |
+
display: block;
|
385 |
+
background-color: #FF4B4B;
|
386 |
+
color: white;
|
387 |
+
border-radius: 5px;
|
388 |
+
padding: 0.5rem 1rem;
|
389 |
+
}
|
390 |
+
|
391 |
+
/* Title styling */
|
392 |
+
.main-title {
|
393 |
+
text-align: center;
|
394 |
+
padding: 1rem 0;
|
395 |
+
font-size: 3rem;
|
396 |
+
color: #1F1F1F;
|
397 |
+
}
|
398 |
+
|
399 |
+
.sub-title {
|
400 |
+
text-align: center;
|
401 |
+
padding: 0.5rem 0;
|
402 |
+
font-size: 1.5rem;
|
403 |
+
color: #4F4F4F;
|
404 |
+
}
|
405 |
+
|
406 |
+
/* Description styling */
|
407 |
+
.description {
|
408 |
+
text-align: center;
|
409 |
+
color: #666666;
|
410 |
+
padding: 0.5rem 0;
|
411 |
+
font-size: 1.1rem;
|
412 |
+
line-height: 1.6;
|
413 |
+
margin-bottom: 1rem;
|
414 |
+
}
|
415 |
+
|
416 |
+
/* Answer container styling */
|
417 |
+
.stMarkdown {
|
418 |
+
max-width: 100%;
|
419 |
+
}
|
420 |
+
|
421 |
+
/* Streamlit default overrides */
|
422 |
+
.st-emotion-cache-16idsys p {
|
423 |
+
font-size: 1.1rem;
|
424 |
+
line-height: 1.6;
|
425 |
+
}
|
426 |
+
|
427 |
+
/* Container for main content */
|
428 |
+
.main-content {
|
429 |
+
max-width: 1200px;
|
430 |
+
margin: 0 auto;
|
431 |
+
padding: 0 1rem;
|
432 |
+
}
|
433 |
+
</style>
|
434 |
+
""", unsafe_allow_html=True)
|
435 |
+
|
436 |
+
# Header section with improved styling
|
437 |
+
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
|
438 |
+
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
439 |
+
st.markdown("""
|
440 |
+
<p class='description'>
|
441 |
+
Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
442 |
+
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
443 |
+
</p>
|
444 |
+
<p class='description'>
|
445 |
+
Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
|
446 |
+
</p>
|
447 |
+
""", unsafe_allow_html=True)
|
448 |
+
|
449 |
+
# Add some spacing
|
450 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
451 |
+
|
452 |
+
|
453 |
+
# Initialize the pipeline
|
454 |
+
try:
|
455 |
+
with st.spinner("Loading resources..."):
|
456 |
+
rag = initialize_rag_pipeline()
|
457 |
+
except Exception as e:
|
458 |
+
print(f"Initialization error: {str(e)}")
|
459 |
+
st.error("Unable to initialize the system. Please check if all required files are present.")
|
460 |
+
st.stop()
|
461 |
+
|
462 |
+
# Create columns for layout with golden ratio
|
463 |
+
col1, col2, col3 = st.columns([1, 6, 1])
|
464 |
+
|
465 |
+
with col2:
|
466 |
+
# Query input with label styling
|
467 |
+
query = st.text_input("What would you like to know about sports?")
|
468 |
+
|
469 |
+
# Centered button
|
470 |
+
if st.button("Get Answer"):
|
471 |
+
if query:
|
472 |
+
response_placeholder = st.empty()
|
473 |
+
try:
|
474 |
+
response = rag.process_query(query, response_placeholder)
|
475 |
+
print(f"Generated response: {response}")
|
476 |
+
except Exception as e:
|
477 |
+
print(f"Query processing error: {str(e)}")
|
478 |
+
response_placeholder.warning("Unable to process your question. Please try again.")
|
479 |
+
else:
|
480 |
+
st.warning("Please enter a question!")
|
481 |
+
|
482 |
+
# Footer with improved styling
|
483 |
+
st.markdown("<br><br>", unsafe_allow_html=True)
|
484 |
+
st.markdown("---")
|
485 |
+
st.markdown("""
|
486 |
+
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
487 |
+
Powered by ESPN Data & Mistral AI π
|
488 |
+
</p>
|
489 |
+
""", unsafe_allow_html=True)
|
490 |
+
|
491 |
+
if __name__ == "__main__":
|
492 |
+
main()
|