Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,385 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import warnings
|
3 |
-
warnings.filterwarnings("ignore", category=UserWarning)
|
4 |
-
|
5 |
-
import streamlit as st
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
import re
|
9 |
-
import requests
|
10 |
-
#from dotenv import load_dotenv
|
11 |
-
from embedding_processor import SentenceTransformerRetriever, process_data
|
12 |
-
import pickle
|
13 |
-
|
14 |
-
import os
|
15 |
-
import warnings
|
16 |
-
import json # Add this import
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# Load environment variables
|
21 |
-
#load_dotenv()
|
22 |
-
|
23 |
-
# Add the new function here, right after imports and before API configuration
|
24 |
-
@st.cache_data
|
25 |
-
@st.cache_data
|
26 |
-
def load_from_drive(file_id: str):
|
27 |
-
"""Load pickle file directly from Google Drive"""
|
28 |
-
try:
|
29 |
-
# Direct download URL for Google Drive
|
30 |
-
url = f"https://drive.google.com/uc?id={file_id}&export=download"
|
31 |
-
|
32 |
-
# First request to get the confirmation token
|
33 |
-
session = requests.Session()
|
34 |
-
response = session.get(url, stream=True)
|
35 |
-
|
36 |
-
# Check if we need to confirm download
|
37 |
-
for key, value in response.cookies.items():
|
38 |
-
if key.startswith('download_warning'):
|
39 |
-
# Add confirmation parameter to the URL
|
40 |
-
url = f"{url}&confirm={value}"
|
41 |
-
response = session.get(url, stream=True)
|
42 |
-
break
|
43 |
-
|
44 |
-
# Load the content and convert to pickle
|
45 |
-
content = response.content
|
46 |
-
print(f"Successfully downloaded {len(content)} bytes")
|
47 |
-
return pickle.loads(content)
|
48 |
-
|
49 |
-
except Exception as e:
|
50 |
-
print(f"Detailed error: {str(e)}") # This will help debug
|
51 |
-
st.error(f"Error loading file from Drive: {str(e)}")
|
52 |
-
return None
|
53 |
-
|
54 |
-
# Hugging Face API configuration
|
55 |
-
|
56 |
-
# API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
|
57 |
-
# headers = {"Authorization": f"Bearer HF_TOKEN"}
|
58 |
-
model_name = 'mistralai/Mistral-7B-v0.1'
|
59 |
-
|
60 |
-
|
61 |
-
class RAGPipeline:
|
62 |
-
|
63 |
-
def __init__(self, data_folder: str, k: int = 3): # Reduced k for faster retrieval
|
64 |
-
self.data_folder = data_folder
|
65 |
-
self.k = k
|
66 |
-
self.retriever = SentenceTransformerRetriever()
|
67 |
-
cache_data = process_data(data_folder)
|
68 |
-
self.documents = cache_data['documents']
|
69 |
-
self.retriever.store_embeddings(cache_data['embeddings'])
|
70 |
-
|
71 |
-
|
72 |
-
# Alternative API call with streaming
|
73 |
-
def query_model(self, payload):
|
74 |
-
"""Query the Hugging Face API with streaming"""
|
75 |
-
try:
|
76 |
-
# Add streaming parameters
|
77 |
-
payload["parameters"]["stream"] = True
|
78 |
-
|
79 |
-
response = requests.post(
|
80 |
-
model_name,
|
81 |
-
#headers=headers,
|
82 |
-
json=payload,
|
83 |
-
stream=True
|
84 |
-
)
|
85 |
-
response.raise_for_status()
|
86 |
-
|
87 |
-
# Collect the entire response
|
88 |
-
full_response = ""
|
89 |
-
for line in response.iter_lines():
|
90 |
-
if line:
|
91 |
-
try:
|
92 |
-
json_response = json.loads(line)
|
93 |
-
if isinstance(json_response, list) and len(json_response) > 0:
|
94 |
-
chunk_text = json_response[0].get('generated_text', '')
|
95 |
-
if chunk_text:
|
96 |
-
full_response += chunk_text
|
97 |
-
except json.JSONDecodeError as e:
|
98 |
-
print(f"Error decoding JSON: {e}")
|
99 |
-
continue
|
100 |
-
|
101 |
-
return [{"generated_text": full_response}]
|
102 |
-
|
103 |
-
except requests.exceptions.RequestException as e:
|
104 |
-
print(f"API request failed: {str(e)}")
|
105 |
-
raise
|
106 |
-
|
107 |
-
def preprocess_query(self, query: str) -> str:
|
108 |
-
"""Clean and prepare the query"""
|
109 |
-
query = query.lower().strip()
|
110 |
-
query = re.sub(r'\s+', ' ', query)
|
111 |
-
return query
|
112 |
-
|
113 |
-
def postprocess_response(self, response: str) -> str:
|
114 |
-
"""Clean up the generated response"""
|
115 |
-
response = response.strip()
|
116 |
-
response = re.sub(r'\s+', ' ', response)
|
117 |
-
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
118 |
-
return response
|
119 |
-
|
120 |
-
|
121 |
-
def process_query(self, query: str, placeholder) -> str:
|
122 |
-
try:
|
123 |
-
# Preprocess query
|
124 |
-
query = self.preprocess_query(query)
|
125 |
-
|
126 |
-
# Show retrieval status
|
127 |
-
status = placeholder.empty()
|
128 |
-
status.write("🔍 Finding relevant information...")
|
129 |
-
|
130 |
-
# Get embeddings and search using tensor operations
|
131 |
-
query_embedding = self.retriever.encode([query])
|
132 |
-
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
133 |
-
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
134 |
-
|
135 |
-
# Print search results for debugging
|
136 |
-
print("\nSearch Results:")
|
137 |
-
for idx, score in zip(indices.tolist(), scores.tolist()):
|
138 |
-
print(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
139 |
-
|
140 |
-
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
141 |
-
|
142 |
-
# Update status
|
143 |
-
status.write("💭 Generating response...")
|
144 |
-
|
145 |
-
# Prepare context and prompt
|
146 |
-
context = "\n".join(relevant_docs[:3]) # Only use top 3 most relevant docs
|
147 |
-
prompt = f"""Answer this question using the given context. Be specific and detailed.
|
148 |
-
|
149 |
-
Context: {context}
|
150 |
-
|
151 |
-
Question: {query}
|
152 |
-
|
153 |
-
Answer (provide a complete, detailed response):"""
|
154 |
-
|
155 |
-
# Generate response
|
156 |
-
response_placeholder = placeholder.empty()
|
157 |
-
|
158 |
-
try:
|
159 |
-
response = requests.post(
|
160 |
-
model_name,
|
161 |
-
#headers=headers,
|
162 |
-
json={
|
163 |
-
"inputs": prompt,
|
164 |
-
"parameters": {
|
165 |
-
"max_new_tokens": 1024,
|
166 |
-
"temperature": 0.5,
|
167 |
-
"top_p": 0.9,
|
168 |
-
"top_k": 50,
|
169 |
-
"repetition_penalty": 1.03,
|
170 |
-
"do_sample": True
|
171 |
-
}
|
172 |
-
},
|
173 |
-
timeout=30
|
174 |
-
).json()
|
175 |
-
|
176 |
-
if response and isinstance(response, list) and len(response) > 0:
|
177 |
-
generated_text = response[0].get('generated_text', '').strip()
|
178 |
-
if generated_text:
|
179 |
-
# Find and extract only the answer part
|
180 |
-
if "Answer:" in generated_text:
|
181 |
-
answer_part = generated_text.split("Answer:")[-1].strip()
|
182 |
-
elif "Answer (provide a complete, detailed response):" in generated_text:
|
183 |
-
answer_part = generated_text.split("Answer (provide a complete, detailed response):")[-1].strip()
|
184 |
-
else:
|
185 |
-
answer_part = generated_text.strip()
|
186 |
-
|
187 |
-
# Clean up the answer
|
188 |
-
answer_part = answer_part.replace("Context:", "").replace("Question:", "")
|
189 |
-
|
190 |
-
final_response = self.postprocess_response(answer_part)
|
191 |
-
response_placeholder.markdown(final_response)
|
192 |
-
return final_response
|
193 |
-
|
194 |
-
message = "No relevant answer found. Please try rephrasing your question."
|
195 |
-
response_placeholder.warning(message)
|
196 |
-
return message
|
197 |
-
|
198 |
-
except Exception as e:
|
199 |
-
print(f"Generation error: {str(e)}")
|
200 |
-
message = "Had some trouble generating the response. Please try again."
|
201 |
-
response_placeholder.warning(message)
|
202 |
-
return message
|
203 |
-
|
204 |
-
except Exception as e:
|
205 |
-
print(f"Process error: {str(e)}")
|
206 |
-
message = "Something went wrong. Please try again with a different question."
|
207 |
-
placeholder.warning(message)
|
208 |
-
return message
|
209 |
-
def check_environment():
|
210 |
-
"""Check if the environment is properly set up"""
|
211 |
-
# if not headers['Authorization']:
|
212 |
-
# st.error("HUGGINGFACE_API_KEY environment variable not set!")
|
213 |
-
# st.stop()
|
214 |
-
# return False
|
215 |
-
|
216 |
-
try:
|
217 |
-
import torch
|
218 |
-
import sentence_transformers
|
219 |
-
return True
|
220 |
-
except ImportError as e:
|
221 |
-
st.error(f"Missing required package: {str(e)}")
|
222 |
-
st.stop()
|
223 |
-
return False
|
224 |
-
|
225 |
-
# @st.cache_resource
|
226 |
-
# def initialize_rag_pipeline():
|
227 |
-
# """Initialize the RAG pipeline once"""
|
228 |
-
# data_folder = "ESPN_data"
|
229 |
-
# return RAGPipeline(data_folder)
|
230 |
-
|
231 |
-
@st.cache_resource
|
232 |
-
def initialize_rag_pipeline():
|
233 |
-
"""Initialize the RAG pipeline once"""
|
234 |
-
data_folder = "ESPN_data"
|
235 |
-
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
|
236 |
-
|
237 |
-
with st.spinner("Loading embeddings from Google Drive..."):
|
238 |
-
cache_data = load_from_drive(drive_file_id)
|
239 |
-
if cache_data is None:
|
240 |
-
st.error("Failed to load embeddings from Google Drive")
|
241 |
-
st.stop()
|
242 |
-
|
243 |
-
rag = RAGPipeline(data_folder)
|
244 |
-
rag.documents = cache_data['documents']
|
245 |
-
rag.retriever.store_embeddings(cache_data['embeddings'])
|
246 |
-
return rag
|
247 |
-
|
248 |
-
def main():
|
249 |
-
# Environment check
|
250 |
-
if not check_environment():
|
251 |
-
return
|
252 |
-
|
253 |
-
# Page config
|
254 |
-
st.set_page_config(
|
255 |
-
page_title="The Sport Chatbot",
|
256 |
-
page_icon="🏆",
|
257 |
-
layout="wide"
|
258 |
-
)
|
259 |
-
|
260 |
-
# Improved CSS styling
|
261 |
-
st.markdown("""
|
262 |
-
<style>
|
263 |
-
/* Container styling */
|
264 |
-
.block-container {
|
265 |
-
padding-top: 2rem;
|
266 |
-
padding-bottom: 2rem;
|
267 |
-
}
|
268 |
-
|
269 |
-
/* Text input styling */
|
270 |
-
.stTextInput > div > div > input {
|
271 |
-
width: 100%;
|
272 |
-
}
|
273 |
-
|
274 |
-
/* Button styling */
|
275 |
-
.stButton > button {
|
276 |
-
width: 200px;
|
277 |
-
margin: 0 auto;
|
278 |
-
display: block;
|
279 |
-
background-color: #FF4B4B;
|
280 |
-
color: white;
|
281 |
-
border-radius: 5px;
|
282 |
-
padding: 0.5rem 1rem;
|
283 |
-
}
|
284 |
-
|
285 |
-
/* Title styling */
|
286 |
-
.main-title {
|
287 |
-
text-align: center;
|
288 |
-
padding: 1rem 0;
|
289 |
-
font-size: 3rem;
|
290 |
-
color: #1F1F1F;
|
291 |
-
}
|
292 |
-
|
293 |
-
.sub-title {
|
294 |
-
text-align: center;
|
295 |
-
padding: 0.5rem 0;
|
296 |
-
font-size: 1.5rem;
|
297 |
-
color: #4F4F4F;
|
298 |
-
}
|
299 |
-
|
300 |
-
/* Description styling */
|
301 |
-
.description {
|
302 |
-
text-align: center;
|
303 |
-
color: #666666;
|
304 |
-
padding: 0.5rem 0;
|
305 |
-
font-size: 1.1rem;
|
306 |
-
line-height: 1.6;
|
307 |
-
margin-bottom: 1rem;
|
308 |
-
}
|
309 |
-
|
310 |
-
/* Answer container styling */
|
311 |
-
.stMarkdown {
|
312 |
-
max-width: 100%;
|
313 |
-
}
|
314 |
-
|
315 |
-
/* Streamlit default overrides */
|
316 |
-
.st-emotion-cache-16idsys p {
|
317 |
-
font-size: 1.1rem;
|
318 |
-
line-height: 1.6;
|
319 |
-
}
|
320 |
-
|
321 |
-
/* Container for main content */
|
322 |
-
.main-content {
|
323 |
-
max-width: 1200px;
|
324 |
-
margin: 0 auto;
|
325 |
-
padding: 0 1rem;
|
326 |
-
}
|
327 |
-
</style>
|
328 |
-
""", unsafe_allow_html=True)
|
329 |
-
|
330 |
-
# Header section with improved styling
|
331 |
-
st.markdown("<h1 class='main-title'>🏆 The Sport Chatbot</h1>", unsafe_allow_html=True)
|
332 |
-
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
333 |
-
st.markdown("""
|
334 |
-
<p class='description'>
|
335 |
-
Hey there! 👋 I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
336 |
-
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
337 |
-
</p>
|
338 |
-
<p class='description'>
|
339 |
-
Got any general questions? Feel free to ask—I'll do my best to provide answers based on the information I've been trained on!
|
340 |
-
</p>
|
341 |
-
""", unsafe_allow_html=True)
|
342 |
-
|
343 |
-
# Add some spacing
|
344 |
-
st.markdown("<br>", unsafe_allow_html=True)
|
345 |
-
|
346 |
-
# Initialize the pipeline
|
347 |
-
try:
|
348 |
-
with st.spinner("Loading resources..."):
|
349 |
-
rag = initialize_rag_pipeline()
|
350 |
-
except Exception as e:
|
351 |
-
print(f"Initialization error: {str(e)}")
|
352 |
-
st.error("Unable to initialize the system. Please check if all required files are present.")
|
353 |
-
st.stop()
|
354 |
-
|
355 |
-
# Create columns for layout with golden ratio
|
356 |
-
col1, col2, col3 = st.columns([1, 6, 1])
|
357 |
-
|
358 |
-
with col2:
|
359 |
-
# Query input with label styling
|
360 |
-
query = st.text_input("What would you like to know about sports?")
|
361 |
-
|
362 |
-
# Centered button
|
363 |
-
if st.button("Get Answer"):
|
364 |
-
if query:
|
365 |
-
response_placeholder = st.empty()
|
366 |
-
try:
|
367 |
-
response = rag.process_query(query, response_placeholder)
|
368 |
-
print(f"Generated response: {response}")
|
369 |
-
except Exception as e:
|
370 |
-
print(f"Query processing error: {str(e)}")
|
371 |
-
response_placeholder.warning("Unable to process your question. Please try again.")
|
372 |
-
else:
|
373 |
-
st.warning("Please enter a question!")
|
374 |
-
|
375 |
-
# Footer with improved styling
|
376 |
-
st.markdown("<br><br>", unsafe_allow_html=True)
|
377 |
-
st.markdown("---")
|
378 |
-
st.markdown("""
|
379 |
-
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
380 |
-
Powered by ESPN Data & Mistral AI 🚀
|
381 |
-
</p>
|
382 |
-
""", unsafe_allow_html=True)
|
383 |
-
|
384 |
-
if __name__ == "__main__":
|
385 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|