File size: 22,511 Bytes
f644e57
 
f30497e
 
f644e57
 
 
 
 
 
f30497e
f644e57
 
 
 
b1e3798
f644e57
 
 
 
 
 
 
f30497e
 
 
 
387e343
f30497e
 
f644e57
 
 
f30497e
 
 
 
f644e57
 
 
 
 
 
 
 
 
 
0b02229
b86ddb5
ed3c7e0
 
 
02a6a53
ed3c7e0
 
 
 
 
 
 
 
 
 
 
f30497e
f644e57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f30497e
387e343
 
 
 
 
 
 
 
f30497e
526c0d9
88e53d1
 
 
 
 
 
 
 
526c0d9
 
 
387e343
f644e57
 
387e343
f644e57
 
f30497e
 
 
 
 
 
 
 
 
 
387e343
f644e57
 
526c0d9
f30497e
88e53d1
f30497e
 
 
 
 
 
 
 
 
 
 
 
f644e57
c8cc55e
f30497e
c8cc55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f30497e
c8cc55e
f30497e
 
 
f644e57
 
 
 
 
 
 
526c0d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f644e57
 
387e343
f644e57
 
 
 
 
060ddae
 
 
 
 
 
953ec65
060ddae
f30497e
9436dcd
060ddae
387e343
a58ff05
88e53d1
a58ff05
88e53d1
a58ff05
060ddae
88e53d1
 
060ddae
 
a58ff05
 
 
 
 
060ddae
a58ff05
060ddae
88e53d1
0ee0be3
060ddae
a58ff05
060ddae
f30497e
0ee0be3
 
060ddae
 
f30497e
 
 
 
 
 
 
 
 
 
 
 
 
 
f644e57
 
387e343
f30497e
c8cc55e
387e343
f30497e
387e343
 
c8cc55e
f30497e
 
c8cc55e
387e343
f30497e
387e343
f30497e
387e343
c8cc55e
 
 
 
 
 
f30497e
c8cc55e
f30497e
 
c8cc55e
 
 
 
 
f30497e
 
 
 
c8cc55e
 
 
f30497e
 
387e343
c8cc55e
387e343
 
 
f30497e
c8cc55e
f30497e
 
387e343
f30497e
387e343
c8cc55e
 
 
f30497e
 
 
f644e57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f30497e
 
 
 
f644e57
387e343
f644e57
 
 
 
 
 
f30497e
f644e57
f30497e
f644e57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f30497e
f644e57
 
 
 
f30497e
ec50cfd
f644e57
 
 
f30497e
f644e57
 
f30497e
 
 
 
c8cc55e
 
 
 
 
 
 
f30497e
 
 
c8cc55e
f30497e
 
c8cc55e
f30497e
f644e57
 
 
f30497e
 
 
f644e57
f30497e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f644e57
f30497e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f644e57
 
f30497e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import os
import warnings
import logging
import sys
warnings.filterwarnings("ignore", category=UserWarning)

import numpy as np
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer
from typing import List, Callable, Dict, Optional, Any
import glob
from tqdm import tqdm
import pickle
import torch.nn.functional as F
from llama_cpp import Llama
import streamlit as st
import functools
from datetime import datetime
import re
import time
import requests

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)

# Force CPU device
torch.device('cpu')

# Create necessary directories
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
    os.makedirs(directory, exist_ok=True)

# Logging configuration
LOGGING_CONFIG = {
    'enabled': True,
    'functions': {
        'encode': True,
        'store_embeddings': True,
        'search': True,
        'load_and_process_csvs': True,
        'process_query': True
    }
}

def download_file_with_progress(url: str, filename: str):
    """Download a file with progress bar using requests"""
    response = requests.get(url, stream=True)
    total_size = int(response.headers.get('content-length', 0))
    
    with open(filename, 'wb') as file, tqdm(
        desc=filename,
        total=total_size,
        unit='iB',
        unit_scale=True,
        unit_divisor=1024,
    ) as progress_bar:
        for data in response.iter_content(chunk_size=1024):
            size = file.write(data)
            progress_bar.update(size)

def log_function(func: Callable) -> Callable:
    """Decorator to log function inputs and outputs"""
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if not LOGGING_CONFIG['enabled'] or not LOGGING_CONFIG['functions'].get(func.__name__, False):
            return func(*args, **kwargs)
        
        if args and hasattr(args[0], '__class__'):
            class_name = args[0].__class__.__name__
        else:
            class_name = func.__module__

        timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
        log_args = args[1:] if class_name != func.__module__ else args
        
        def format_arg(arg):
            if isinstance(arg, torch.Tensor):
                return f"Tensor(shape={list(arg.shape)}, device={arg.device})"
            elif isinstance(arg, list):
                return f"List(len={len(arg)})"
            elif isinstance(arg, str) and len(arg) > 100:
                return f"String(len={len(arg)}): {arg[:100]}..."
            return arg

        formatted_args = [format_arg(arg) for arg in log_args]
        formatted_kwargs = {k: format_arg(v) for k, v in kwargs.items()}

        print(f"\n{'='*80}")
        print(f"[{timestamp}] FUNCTION CALL: {class_name}.{func.__name__}")
        print(f"INPUTS:")
        print(f"  args: {formatted_args}")
        print(f"  kwargs: {formatted_kwargs}")

        result = func(*args, **kwargs)

        formatted_result = format_arg(result)
        print(f"OUTPUT:")
        print(f"  {formatted_result}")
        print(f"{'='*80}\n")

        return result
    return wrapper

def check_environment():
    """Check if the environment is properly set up"""
    try:
        import numpy as np
        import torch
        import sentence_transformers
        import llama_cpp
        return True
    except ImportError as e:
        st.error(f"Missing required package: {str(e)}")
        st.stop()
        return False

class SentenceTransformerRetriever:
    def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", cache_dir: str = "embeddings_cache"):
        self.device = torch.device("cpu")
        self.model_name = model_name
        self.cache_dir = cache_dir
        self.cache_file = "embeddings.pkl"
        self.doc_embeddings = None
        os.makedirs(cache_dir, exist_ok=True)
        self.model = self._load_model(model_name)

    @st.cache_resource(show_spinner=False)
    def _load_model(_self, _model_name: str):
        try:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                model = SentenceTransformer(_model_name, device="cpu")
                test_embedding = model.encode("test", convert_to_tensor=True)
                if not isinstance(test_embedding, torch.Tensor):
                    raise ValueError("Model initialization failed")
                return model
        except Exception as e:
            logging.error(f"Error loading model: {str(e)}")
            raise

    def get_cache_path(self, data_folder: str = None) -> str:
        return os.path.join(self.cache_dir, self.cache_file)

    @log_function
    def save_cache(self, data_folder: str, cache_data: dict):
        try:
            cache_path = self.get_cache_path()
            if os.path.exists(cache_path):
                os.remove(cache_path)
            with open(cache_path, 'wb') as f:
                pickle.dump(cache_data, f)
                logging.info(f"Cache saved at: {cache_path}")
        except Exception as e:
            logging.error(f"Error saving cache: {str(e)}")
            raise

    @log_function
    @st.cache_data
    def load_cache(_self, _data_folder: str = None) -> Optional[Dict]:
        try:
            cache_path = _self.get_cache_path()
            if os.path.exists(cache_path):
                with open(cache_path, 'rb') as f:
                    logging.info(f"Loading cache from: {cache_path}")
                    cache_data = pickle.load(f)
                    if isinstance(cache_data, dict) and 'embeddings' in cache_data and 'documents' in cache_data:
                        return cache_data
                    logging.warning("Invalid cache format")
            return None
        except Exception as e:
            logging.error(f"Error loading cache: {str(e)}")
            return None

    @log_function
    def encode(self, texts: List[str], batch_size: int = 64) -> torch.Tensor:  # Increased batch size
        try:
            # Show a Streamlit progress bar
            progress_text = "Processing documents..."
            progress_bar = st.progress(0)
            
            total_batches = len(texts) // batch_size + (1 if len(texts) % batch_size != 0 else 0)
            all_embeddings = []
            
            for i in range(0, len(texts), batch_size):
                batch = texts[i:i + batch_size]
                batch_embeddings = self.model.encode(
                    batch,
                    convert_to_tensor=True,
                    show_progress_bar=False  # Disable tqdm progress bar
                )
                all_embeddings.append(batch_embeddings)
                
                # Update progress
                progress = min((i + batch_size) / len(texts), 1.0)
                progress_bar.progress(progress)
            
            # Clear progress bar
            progress_bar.empty()
            
            # Concatenate all embeddings
            embeddings = torch.cat(all_embeddings, dim=0)
            return F.normalize(embeddings, p=2, dim=1)
            
        except Exception as e:
            logging.error(f"Error encoding texts: {str(e)}")
            raise

    @log_function
    def store_embeddings(self, embeddings: torch.Tensor):
        self.doc_embeddings = embeddings

    @log_function
    def search(self, query_embedding: torch.Tensor, k: int, documents: List[str]):
        try:
            if self.doc_embeddings is None:
                raise ValueError("No document embeddings stored!")
            
            similarities = F.cosine_similarity(query_embedding, self.doc_embeddings)
            k = min(k, len(documents))
            scores, indices = torch.topk(similarities, k=k)
            
            logging.info(f"\nSimilarity Stats:")
            logging.info(f"Max similarity: {similarities.max().item():.4f}")
            logging.info(f"Mean similarity: {similarities.mean().item():.4f}")
            logging.info(f"Selected similarities: {scores.tolist()}")
            
            return indices.cpu(), scores.cpu()
        except Exception as e:
            logging.error(f"Error in search: {str(e)}")
            raise

class RAGPipeline:
    def __init__(self, data_folder: str, k: int = 5):
        self.data_folder = data_folder
        self.k = k
        self.retriever = SentenceTransformerRetriever()
        self.documents = []
        self.device = torch.device("cpu")
        
        # Change 1: Process documents first
        self.load_and_process_csvs()
        
        # Change 2: Simplified model path
        self.model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
        self.llm = None
        # Change 3: Initialize model after documents are processed
        self._initialize_model()

    @st.cache_resource  # Added caching decorator
    def _initialize_model(_self):
        try:
            if not os.path.exists(_self.model_path):
                direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
                download_file_with_progress(direct_url, _self.model_path)

            # Added better error handling
            if not os.path.exists(_self.model_path):
                raise FileNotFoundError(f"Model file {_self.model_path} not found after download attempts")
        
            # Added verbose mode for better debugging
            llm_config = {
                "n_ctx": 2048,
                "n_threads": 4,
                "n_batch": 512,
                "n_gpu_layers": 0,
                "verbose": True  # Added this
            }
    
            _self.llm = Llama(model_path=_self.model_path, **llm_config)
            st.success("Model loaded successfully!")
        
        except Exception as e:
            # Added better error logging
            logging.error(f"Error initializing model: {str(e)}")
            st.error(f"Error initializing model: {str(e)}")
            raise
    
        
    def check_model_health(self):
        try:
            if self.llm is None:
                return False
            test_response = self.llm(
                "Test prompt",
                max_tokens=10,
                temperature=0.4,
                echo=False
            )
            return isinstance(test_response, dict) and 'choices' in test_response
        except Exception:
            return False

    @log_function
    @st.cache_data
    def load_and_process_csvs(_self):
        try:
            # Try loading from cache first
            cache_data = _self.retriever.load_cache(_self.data_folder)
            if cache_data is not None:
                _self.documents = cache_data['documents']
                _self.retriever.store_embeddings(cache_data['embeddings'])
                st.success("Loaded documents from cache")
                return

            st.info("Processing documents... This may take a while.")
            csv_files = glob.glob(os.path.join(_self.data_folder, "*.csv"))
            if not csv_files:
                raise FileNotFoundError(f"No CSV files found in {_self.data_folder}")
            
            all_documents = []
            total_files = len(csv_files)
            
            # Create a progress bar
            progress_bar = st.progress(0)
            
            for idx, csv_file in enumerate(csv_files):
                try:
                    df = pd.read_csv(csv_file, low_memory=False)  # Added low_memory=False
                    texts = df.apply(lambda x: " ".join(x.astype(str)), axis=1).tolist()
                    all_documents.extend(texts)
                    
                    # Update progress
                    progress = (idx + 1) / total_files
                    progress_bar.progress(progress)
                    
                except Exception as e:
                    logging.error(f"Error processing file {csv_file}: {e}")
                    continue
            
            # Clear progress bar
            progress_bar.empty()
            
            if not all_documents:
                raise ValueError("No documents were successfully loaded")
            
            st.info(f"Processing {len(all_documents)} documents...")
            _self.documents = all_documents
            embeddings = _self.retriever.encode(all_documents)
            _self.retriever.store_embeddings(embeddings)
            
            # Save to cache
            cache_data = {
                'embeddings': embeddings,
                'documents': _self.documents
            }
            _self.retriever.save_cache(_self.data_folder, cache_data)
            
            st.success("Document processing complete!")
            
        except Exception as e:
            logging.error(f"Error in load_and_process_csvs: {str(e)}")
            raise

    def preprocess_query(self, query: str) -> str:
        query = query.lower().strip()
        query = re.sub(r'\s+', ' ', query)
        return query

    def postprocess_response(self, response: str) -> str:
        response = response.strip()
        response = re.sub(r'\s+', ' ', response)
        response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
        return response

    @log_function
    def process_query(self, query: str, placeholder) -> str:
        try:
            if self.llm is None:
                raise RuntimeError("LLM model not initialized")
            if self.retriever.model is None:
                raise RuntimeError("Sentence transformer model not initialized")
            
            query = self.preprocess_query(query)
            status = placeholder.empty()
            status.write("πŸ” Finding relevant information...")
            
            query_embedding = self.retriever.encode([query])
            indices, scores = self.retriever.search(query_embedding, self.k, self.documents)
            
            logging.info("\nSearch Results:")
            for idx, score in zip(indices.tolist(), scores.tolist()):
                logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
            
            relevant_docs = [self.documents[idx] for idx in indices.tolist()]
            status.write("πŸ’­ Generating response...")
            
            context = "\n".join(relevant_docs)
            prompt = f"""Context information is below:
            {context}
            
            Given the context above, please answer the following question:
            {query}

            Guidelines:
            - If you cannot answer based on the context, say so politely
            - Keep the response concise and focused
            - Only include sports-related information
            - No dates or timestamps in the response
            - Use clear, natural language
            
            Answer:"""
            
            response_placeholder = placeholder.empty()
            
            try:
                response = self.llm(
                    prompt,
                    max_tokens=512,
                    temperature=0.4,
                    top_p=0.95,
                    echo=False,
                    stop=["Question:", "\n\n"]
                )
                
                if response and 'choices' in response and len(response['choices']) > 0:
                    generated_text = response['choices'][0].get('text', '').strip()
                    if generated_text:
                        final_response = self.postprocess_response(generated_text)
                        response_placeholder.markdown(final_response)
                        return final_response
                    else:
                        message = "No relevant answer found. Please try rephrasing your question."
                        response_placeholder.warning(message)
                        return message
                else:
                    message = "Unable to generate response. Please try again."
                    response_placeholder.warning(message)
                    return message
            except Exception as e:
                logging.error(f"Generation error: {str(e)}")
                message = "Had some trouble generating the response. Please try again."
                response_placeholder.warning(message)
                return message
        except Exception as e:
            logging.error(f"Process error: {str(e)}")
            message = "Something went wrong. Please try again with a different question."
            placeholder.warning(message)
            return message

@st.cache_resource(show_spinner=False)
def initialize_rag_pipeline():
    """Initialize the RAG pipeline once"""
    try:
        data_folder = "ESPN_data"
        if not os.path.exists(data_folder):
            os.makedirs(data_folder, exist_ok=True)
        
        # Check for cache
        cache_path = os.path.join("embeddings_cache", "embeddings.pkl")
        if os.path.exists(cache_path):
            st.info("Found cached data. Loading...")
        else:
            st.warning("Initial setup may take several minutes...")
            
        rag = RAGPipeline(data_folder)
        return rag
        
    except Exception as e:
        logging.error(f"Pipeline initialization error: {str(e)}")
        st.error("Failed to initialize the system. Please check if all required files are present.")
        raise

def main():
    try:
        # Environment check
        if not check_environment():
            return

        # Page config
        st.set_page_config(
            page_title="The Sport Chatbot",
            page_icon="πŸ†",
            layout="wide"
        )

        # Improved CSS styling
        st.markdown("""
            <style>
            .block-container {
                padding-top: 2rem;
                padding-bottom: 2rem;
            }
            
            .stTextInput > div > div > input {
                width: 100%;
            }
            
            .stButton > button {
                width: 200px;
                margin: 0 auto;
                display: block;
                background-color: #FF4B4B;
                color: white;
                border-radius: 5px;
                padding: 0.5rem 1rem;
            }
            
            .main-title {
                text-align: center;
                padding: 1rem 0;
                font-size: 3rem;
                color: #1F1F1F;
            }
            
            .sub-title {
                text-align: center;
                padding: 0.5rem 0;
                font-size: 1.5rem;
                color: #4F4F4F;
            }
            
            .description {
                text-align: center;
                color: #666666;
                padding: 0.5rem 0;
                font-size: 1.1rem;
                line-height: 1.6;
                margin-bottom: 1rem;
            }

            .stMarkdown {
                max-width: 100%;
            }

            .st-emotion-cache-16idsys p {
                font-size: 1.1rem;
                line-height: 1.6;
            }
            
            .main-content {
                max-width: 1200px;
                margin: 0 auto;
                padding: 0 1rem;
            }
            </style>
        """, unsafe_allow_html=True)

        # Header section
        st.markdown("<h1 class='main-title'>πŸ† The Sport Chatbot</h1>", unsafe_allow_html=True)
        st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
        st.markdown("""
            <p class='description'>
                Hey there! πŸ‘‹ I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball. 
                With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
            </p>
            <p class='description'>
                Got any general questions? Feel free to askβ€”I'll do my best to provide answers based on the information I've been trained on!
            </p>
        """, unsafe_allow_html=True)

        # Add spacing
        st.markdown("<br>", unsafe_allow_html=True)

        # Initialize the pipeline
        try:
            with st.spinner("Loading resources..."):
                rag = initialize_rag_pipeline()
                
                # Add a model health check
                if not rag.check_model_health():
                    st.error("Model initialization failed. Please try restarting the application.")
                    return
                    
        except Exception as e:
            logging.error(f"Initialization error: {str(e)}")
            st.error("Unable to initialize the system. Please check if all required files are present.")
            return

        # Create columns for layout with golden ratio
        col1, col2, col3 = st.columns([1, 6, 1])
        
        with col2:
            # Query input with label styling
            query = st.text_input("What would you like to know about sports?")
            
            # Centered button
            if st.button("Get Answer"):
                if query:
                    response_placeholder = st.empty()
                    try:
                        response = rag.process_query(query, response_placeholder)
                        logging.info(f"Generated response: {response}")
                    except Exception as e:
                        logging.error(f"Query processing error: {str(e)}")
                        response_placeholder.warning("Unable to process your question. Please try again.")
                else:
                    st.warning("Please enter a question!")

        # Footer
        st.markdown("<br><br>", unsafe_allow_html=True)
        st.markdown("---")
        st.markdown("""
            <p style='text-align: center; color: #666666; padding: 1rem 0;'>
                Powered by ESPN Data & Mistral AI πŸš€
            </p>
        """, unsafe_allow_html=True)

    except Exception as e:
        logging.error(f"Application error: {str(e)}")
        st.error("An unexpected error occurred. Please check the logs and try again.")

if __name__ == "__main__":
    try:
        main()
    except Exception as e:
        logging.error(f"Application error: {str(e)}")
        st.error("An unexpected error occurred. Please check the logs and try again.")