nickkun's picture
Update app.py
d547454 verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Nikhil Kunjoor
"""
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageFilter, ImageOps
import numpy as np
import requests
import cv2
# Dictionary of available segmentation models
SEGMENTATION_MODELS = {
"NVIDIA SegFormer (Cityscapes)": "nvidia/segformer-b1-finetuned-cityscapes-1024-1024",
"NVIDIA SegFormer (ADE20K)": "nvidia/segformer-b0-finetuned-ade-512-512",
"Facebook MaskFormer (COCO)": "facebook/maskformer-swin-base-ade",
"OneFormer (COCO)": "shi-labs/oneformer_coco_swin_large",
"NVIDIA SegFormer (B5)": "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
}
# Dictionary of available depth estimation models
DEPTH_MODELS = {
"Intel ZoeDepth (NYU-KITTI)": "Intel/zoedepth-nyu-kitti",
"DPT (Large)": "Intel/dpt-large",
"DPT (Hybrid)": "Intel/dpt-hybrid-midas",
"GLPDepth": "vinvino02/glpn-nyu"
}
# Initialize model placeholders
segmentation_model = None
depth_estimator = None
def load_segmentation_model(model_name):
"""Load the selected segmentation model"""
global segmentation_model
model_path = SEGMENTATION_MODELS[model_name]
print(f"Loading segmentation model: {model_path}...")
segmentation_model = pipeline("image-segmentation", model=model_path)
return f"Loaded segmentation model: {model_name}"
def load_depth_model(model_name):
"""Load the selected depth estimation model"""
global depth_estimator
model_path = DEPTH_MODELS[model_name]
print(f"Loading depth estimation model: {model_path}...")
depth_estimator = pipeline("depth-estimation", model=model_path)
return f"Loaded depth model: {model_name}"
def lens_blur(image, radius):
"""
Apply a more realistic lens blur (bokeh effect) using OpenCV.
"""
if radius < 1:
return image
# Convert PIL image to OpenCV format
img_np = np.array(image)
# Create a circular kernel for the bokeh effect
kernel_size = 2 * radius + 1
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
center = radius
for i in range(kernel_size):
for j in range(kernel_size):
# Create circular kernel
if np.sqrt((i - center) ** 2 + (j - center) ** 2) <= radius:
kernel[i, j] = 1.0
# Normalize the kernel
if kernel.sum() != 0:
kernel = kernel / kernel.sum()
# Apply the filter to each channel separately
channels = cv2.split(img_np)
blurred_channels = []
for channel in channels:
blurred_channel = cv2.filter2D(channel, -1, kernel)
blurred_channels.append(blurred_channel)
# Merge the channels back
blurred_img = cv2.merge(blurred_channels)
# Convert back to PIL image
return Image.fromarray(blurred_img)
def process_image(input_image, method, blur_intensity, blur_type):
"""
Process the input image using one of two methods:
1. Segmented Background Blur:
- Uses segmentation to extract a foreground mask.
- Applies the selected blur (Gaussian or Lens) to the background.
- Composites the final image.
2. Depth-based Variable Blur:
- Uses depth estimation to generate a depth map.
- Normalizes the depth map to be used as a blending mask.
- Blends a fully blurred version (using the selected blur) with the original image.
Returns:
- output_image: final composited image.
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based).
"""
# Check if models are loaded
if segmentation_model is None or depth_estimator is None:
return input_image, input_image.convert("L")
# Ensure image is in RGB mode
input_image = input_image.convert("RGB")
# Select blur function based on blur_type
if blur_type == "Gaussian Blur":
blur_fn = lambda img, rad: img.filter(ImageFilter.GaussianBlur(radius=rad))
elif blur_type == "Lens Blur":
blur_fn = lens_blur
else:
blur_fn = lambda img, rad: img.filter(ImageFilter.GaussianBlur(radius=rad))
if method == "Segmented Background Blur":
# Use segmentation to obtain a foreground mask.
results = segmentation_model(input_image)
# Assume the last result is the main foreground object.
foreground_mask = results[-1]["mask"]
# Ensure the mask is grayscale.
foreground_mask = foreground_mask.convert("L")
# Threshold to create a binary mask.
binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0)
# Blur the background using the selected blur function.
blurred_background = blur_fn(input_image, blur_intensity)
# Composite the final image: keep foreground and use blurred background elsewhere.
output_image = Image.composite(input_image, blurred_background, binary_mask)
mask_image = binary_mask
elif method == "Depth-based Variable Blur":
# Generate depth map.
depth_results = depth_estimator(input_image)
depth_map = depth_results["depth"]
# Convert depth map to numpy array and normalize to [0, 255]
depth_array = np.array(depth_map).astype(np.float32)
norm = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min() + 1e-8)
normalized_depth = (norm * 255).astype(np.uint8)
mask_image = Image.fromarray(normalized_depth)
# Create fully blurred version using the selected blur function.
blurred_image = blur_fn(input_image, blur_intensity)
# Convert images to arrays for blending.
orig_np = np.array(input_image).astype(np.float32)
blur_np = np.array(blurred_image).astype(np.float32)
# Reshape mask for broadcasting.
alpha = normalized_depth[..., np.newaxis] / 255.0
# Blend pixels: 0 = original; 1 = fully blurred.
blended_np = (1 - alpha) * orig_np + alpha * blur_np
blended_np = np.clip(blended_np, 0, 255).astype(np.uint8)
output_image = Image.fromarray(blended_np)
else:
output_image = input_image
mask_image = input_image.convert("L")
return output_image, mask_image
# Build a Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Image Processing App: Segmentation & Depth-based Blur")
with gr.Tab("Model Selection"):
with gr.Row():
with gr.Column():
seg_model_dropdown = gr.Dropdown(
label="Segmentation Model",
choices=list(SEGMENTATION_MODELS.keys()),
value=list(SEGMENTATION_MODELS.keys())[0]
)
seg_model_load_btn = gr.Button("Load Segmentation Model")
seg_model_status = gr.Textbox(label="Status", value="No model loaded")
with gr.Column():
depth_model_dropdown = gr.Dropdown(
label="Depth Estimation Model",
choices=list(DEPTH_MODELS.keys()),
value=list(DEPTH_MODELS.keys())[0]
)
depth_model_load_btn = gr.Button("Load Depth Model")
depth_model_status = gr.Textbox(label="Status", value="No model loaded")
with gr.Tab("Image Processing"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
method = gr.Radio(label="Processing Method",
choices=["Segmented Background Blur", "Depth-based Variable Blur"],
value="Segmented Background Blur")
blur_intensity = gr.Slider(label="Blur Intensity (Maximum Blur Radius)",
minimum=1, maximum=30, step=1, value=15)
blur_type = gr.Dropdown(label="Blur Type",
choices=["Gaussian Blur", "Lens Blur"],
value="Gaussian Blur")
run_button = gr.Button("Process Image")
with gr.Column():
output_image = gr.Image(label="Output Image")
mask_output = gr.Image(label="Mask")
# Set up event handlers
seg_model_load_btn.click(
fn=load_segmentation_model,
inputs=[seg_model_dropdown],
outputs=[seg_model_status]
)
depth_model_load_btn.click(
fn=load_depth_model,
inputs=[depth_model_dropdown],
outputs=[depth_model_status]
)
run_button.click(
fn=process_image,
inputs=[input_image, method, blur_intensity, blur_type],
outputs=[output_image, mask_output]
)
# Load default models on startup
demo.load(
fn=lambda: (
load_segmentation_model(list(SEGMENTATION_MODELS.keys())[0]),
load_depth_model(list(DEPTH_MODELS.keys())[0])
),
inputs=None,
outputs=[seg_model_status, depth_model_status]
)
# Launch the app
demo.launch()