|
|
|
|
|
""" |
|
@author: Nikhil Kunjoor |
|
""" |
|
import gradio as gr |
|
from transformers import pipeline |
|
from PIL import Image, ImageFilter, ImageOps |
|
import numpy as np |
|
import requests |
|
import cv2 |
|
|
|
|
|
SEGMENTATION_MODELS = { |
|
"NVIDIA SegFormer (Cityscapes)": "nvidia/segformer-b1-finetuned-cityscapes-1024-1024", |
|
"NVIDIA SegFormer (ADE20K)": "nvidia/segformer-b0-finetuned-ade-512-512", |
|
"Facebook MaskFormer (COCO)": "facebook/maskformer-swin-base-ade", |
|
"OneFormer (COCO)": "shi-labs/oneformer_coco_swin_large", |
|
"NVIDIA SegFormer (B5)": "nvidia/segformer-b5-finetuned-cityscapes-1024-1024" |
|
} |
|
|
|
|
|
DEPTH_MODELS = { |
|
"Intel ZoeDepth (NYU-KITTI)": "Intel/zoedepth-nyu-kitti", |
|
"DPT (Large)": "Intel/dpt-large", |
|
"DPT (Hybrid)": "Intel/dpt-hybrid-midas", |
|
"GLPDepth": "vinvino02/glpn-nyu" |
|
} |
|
|
|
|
|
segmentation_model = None |
|
depth_estimator = None |
|
|
|
def load_segmentation_model(model_name): |
|
"""Load the selected segmentation model""" |
|
global segmentation_model |
|
model_path = SEGMENTATION_MODELS[model_name] |
|
print(f"Loading segmentation model: {model_path}...") |
|
segmentation_model = pipeline("image-segmentation", model=model_path) |
|
return f"Loaded segmentation model: {model_name}" |
|
|
|
def load_depth_model(model_name): |
|
"""Load the selected depth estimation model""" |
|
global depth_estimator |
|
model_path = DEPTH_MODELS[model_name] |
|
print(f"Loading depth estimation model: {model_path}...") |
|
depth_estimator = pipeline("depth-estimation", model=model_path) |
|
return f"Loaded depth model: {model_name}" |
|
|
|
def lens_blur(image, radius): |
|
""" |
|
Apply a more realistic lens blur (bokeh effect) using OpenCV. |
|
""" |
|
if radius < 1: |
|
return image |
|
|
|
|
|
img_np = np.array(image) |
|
|
|
|
|
kernel_size = 2 * radius + 1 |
|
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32) |
|
center = radius |
|
for i in range(kernel_size): |
|
for j in range(kernel_size): |
|
|
|
if np.sqrt((i - center) ** 2 + (j - center) ** 2) <= radius: |
|
kernel[i, j] = 1.0 |
|
|
|
|
|
if kernel.sum() != 0: |
|
kernel = kernel / kernel.sum() |
|
|
|
|
|
channels = cv2.split(img_np) |
|
blurred_channels = [] |
|
|
|
for channel in channels: |
|
blurred_channel = cv2.filter2D(channel, -1, kernel) |
|
blurred_channels.append(blurred_channel) |
|
|
|
|
|
blurred_img = cv2.merge(blurred_channels) |
|
|
|
|
|
return Image.fromarray(blurred_img) |
|
|
|
def process_image(input_image, method, blur_intensity, blur_type): |
|
""" |
|
Process the input image using one of two methods: |
|
|
|
1. Segmented Background Blur: |
|
- Uses segmentation to extract a foreground mask. |
|
- Applies the selected blur (Gaussian or Lens) to the background. |
|
- Composites the final image. |
|
|
|
2. Depth-based Variable Blur: |
|
- Uses depth estimation to generate a depth map. |
|
- Normalizes the depth map to be used as a blending mask. |
|
- Blends a fully blurred version (using the selected blur) with the original image. |
|
|
|
Returns: |
|
- output_image: final composited image. |
|
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based). |
|
""" |
|
|
|
if segmentation_model is None or depth_estimator is None: |
|
return input_image, input_image.convert("L") |
|
|
|
|
|
input_image = input_image.convert("RGB") |
|
|
|
|
|
if blur_type == "Gaussian Blur": |
|
blur_fn = lambda img, rad: img.filter(ImageFilter.GaussianBlur(radius=rad)) |
|
elif blur_type == "Lens Blur": |
|
blur_fn = lens_blur |
|
else: |
|
blur_fn = lambda img, rad: img.filter(ImageFilter.GaussianBlur(radius=rad)) |
|
|
|
if method == "Segmented Background Blur": |
|
|
|
results = segmentation_model(input_image) |
|
|
|
foreground_mask = results[-1]["mask"] |
|
|
|
foreground_mask = foreground_mask.convert("L") |
|
|
|
binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0) |
|
|
|
|
|
blurred_background = blur_fn(input_image, blur_intensity) |
|
|
|
|
|
output_image = Image.composite(input_image, blurred_background, binary_mask) |
|
mask_image = binary_mask |
|
|
|
elif method == "Depth-based Variable Blur": |
|
|
|
depth_results = depth_estimator(input_image) |
|
depth_map = depth_results["depth"] |
|
|
|
|
|
depth_array = np.array(depth_map).astype(np.float32) |
|
norm = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min() + 1e-8) |
|
normalized_depth = (norm * 255).astype(np.uint8) |
|
mask_image = Image.fromarray(normalized_depth) |
|
|
|
|
|
blurred_image = blur_fn(input_image, blur_intensity) |
|
|
|
|
|
orig_np = np.array(input_image).astype(np.float32) |
|
blur_np = np.array(blurred_image).astype(np.float32) |
|
|
|
alpha = normalized_depth[..., np.newaxis] / 255.0 |
|
|
|
|
|
blended_np = (1 - alpha) * orig_np + alpha * blur_np |
|
blended_np = np.clip(blended_np, 0, 255).astype(np.uint8) |
|
output_image = Image.fromarray(blended_np) |
|
|
|
else: |
|
output_image = input_image |
|
mask_image = input_image.convert("L") |
|
|
|
return output_image, mask_image |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Image Processing App: Segmentation & Depth-based Blur") |
|
|
|
with gr.Tab("Model Selection"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
seg_model_dropdown = gr.Dropdown( |
|
label="Segmentation Model", |
|
choices=list(SEGMENTATION_MODELS.keys()), |
|
value=list(SEGMENTATION_MODELS.keys())[0] |
|
) |
|
seg_model_load_btn = gr.Button("Load Segmentation Model") |
|
seg_model_status = gr.Textbox(label="Status", value="No model loaded") |
|
|
|
with gr.Column(): |
|
depth_model_dropdown = gr.Dropdown( |
|
label="Depth Estimation Model", |
|
choices=list(DEPTH_MODELS.keys()), |
|
value=list(DEPTH_MODELS.keys())[0] |
|
) |
|
depth_model_load_btn = gr.Button("Load Depth Model") |
|
depth_model_status = gr.Textbox(label="Status", value="No model loaded") |
|
|
|
with gr.Tab("Image Processing"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil") |
|
method = gr.Radio(label="Processing Method", |
|
choices=["Segmented Background Blur", "Depth-based Variable Blur"], |
|
value="Segmented Background Blur") |
|
blur_intensity = gr.Slider(label="Blur Intensity (Maximum Blur Radius)", |
|
minimum=1, maximum=30, step=1, value=15) |
|
blur_type = gr.Dropdown(label="Blur Type", |
|
choices=["Gaussian Blur", "Lens Blur"], |
|
value="Gaussian Blur") |
|
run_button = gr.Button("Process Image") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Output Image") |
|
mask_output = gr.Image(label="Mask") |
|
|
|
|
|
seg_model_load_btn.click( |
|
fn=load_segmentation_model, |
|
inputs=[seg_model_dropdown], |
|
outputs=[seg_model_status] |
|
) |
|
|
|
depth_model_load_btn.click( |
|
fn=load_depth_model, |
|
inputs=[depth_model_dropdown], |
|
outputs=[depth_model_status] |
|
) |
|
|
|
run_button.click( |
|
fn=process_image, |
|
inputs=[input_image, method, blur_intensity, blur_type], |
|
outputs=[output_image, mask_output] |
|
) |
|
|
|
|
|
demo.load( |
|
fn=lambda: ( |
|
load_segmentation_model(list(SEGMENTATION_MODELS.keys())[0]), |
|
load_depth_model(list(DEPTH_MODELS.keys())[0]) |
|
), |
|
inputs=None, |
|
outputs=[seg_model_status, depth_model_status] |
|
) |
|
|
|
|
|
demo.launch() |