Update app.py
Browse filesAdded Model Selection
app.py
CHANGED
@@ -10,11 +10,42 @@ import numpy as np
|
|
10 |
import requests
|
11 |
import cv2
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def lens_blur(image, radius):
|
20 |
"""
|
@@ -72,6 +103,10 @@ def process_image(input_image, method, blur_intensity, blur_type):
|
|
72 |
- output_image: final composited image.
|
73 |
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based).
|
74 |
"""
|
|
|
|
|
|
|
|
|
75 |
# Ensure image is in RGB mode
|
76 |
input_image = input_image.convert("RGB")
|
77 |
|
@@ -135,22 +170,71 @@ def process_image(input_image, method, blur_intensity, blur_type):
|
|
135 |
with gr.Blocks() as demo:
|
136 |
gr.Markdown("## Image Processing App: Segmentation & Depth-based Blur")
|
137 |
|
138 |
-
with gr.
|
139 |
-
with gr.
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
# Launch the app
|
156 |
demo.launch()
|
|
|
10 |
import requests
|
11 |
import cv2
|
12 |
|
13 |
+
# Dictionary of available segmentation models
|
14 |
+
SEGMENTATION_MODELS = {
|
15 |
+
"NVIDIA SegFormer (Cityscapes)": "nvidia/segformer-b1-finetuned-cityscapes-1024-1024",
|
16 |
+
"NVIDIA SegFormer (ADE20K)": "nvidia/segformer-b0-finetuned-ade-512-512",
|
17 |
+
"Facebook MaskFormer (COCO)": "facebook/maskformer-swin-base-ade",
|
18 |
+
"OneFormer (COCO)": "shi-labs/oneformer_coco_swin_large",
|
19 |
+
"NVIDIA SegFormer (B5)": "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
20 |
+
}
|
21 |
+
|
22 |
+
# Dictionary of available depth estimation models
|
23 |
+
DEPTH_MODELS = {
|
24 |
+
"Intel ZoeDepth (NYU-KITTI)": "Intel/zoedepth-nyu-kitti",
|
25 |
+
"DPT (Large)": "Intel/dpt-large",
|
26 |
+
"DPT (Hybrid)": "Intel/dpt-hybrid-midas",
|
27 |
+
"GLPDepth": "vinvino02/glpn-nyu"
|
28 |
+
}
|
29 |
+
|
30 |
+
# Initialize model placeholders
|
31 |
+
segmentation_model = None
|
32 |
+
depth_estimator = None
|
33 |
+
|
34 |
+
def load_segmentation_model(model_name):
|
35 |
+
"""Load the selected segmentation model"""
|
36 |
+
global segmentation_model
|
37 |
+
model_path = SEGMENTATION_MODELS[model_name]
|
38 |
+
print(f"Loading segmentation model: {model_path}...")
|
39 |
+
segmentation_model = pipeline("image-segmentation", model=model_path)
|
40 |
+
return f"Loaded segmentation model: {model_name}"
|
41 |
+
|
42 |
+
def load_depth_model(model_name):
|
43 |
+
"""Load the selected depth estimation model"""
|
44 |
+
global depth_estimator
|
45 |
+
model_path = DEPTH_MODELS[model_name]
|
46 |
+
print(f"Loading depth estimation model: {model_path}...")
|
47 |
+
depth_estimator = pipeline("depth-estimation", model=model_path)
|
48 |
+
return f"Loaded depth model: {model_name}"
|
49 |
|
50 |
def lens_blur(image, radius):
|
51 |
"""
|
|
|
103 |
- output_image: final composited image.
|
104 |
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based).
|
105 |
"""
|
106 |
+
# Check if models are loaded
|
107 |
+
if segmentation_model is None or depth_estimator is None:
|
108 |
+
return input_image, input_image.convert("L")
|
109 |
+
|
110 |
# Ensure image is in RGB mode
|
111 |
input_image = input_image.convert("RGB")
|
112 |
|
|
|
170 |
with gr.Blocks() as demo:
|
171 |
gr.Markdown("## Image Processing App: Segmentation & Depth-based Blur")
|
172 |
|
173 |
+
with gr.Tab("Model Selection"):
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
seg_model_dropdown = gr.Dropdown(
|
177 |
+
label="Segmentation Model",
|
178 |
+
choices=list(SEGMENTATION_MODELS.keys()),
|
179 |
+
value=list(SEGMENTATION_MODELS.keys())[0]
|
180 |
+
)
|
181 |
+
seg_model_load_btn = gr.Button("Load Segmentation Model")
|
182 |
+
seg_model_status = gr.Textbox(label="Status", value="No model loaded")
|
183 |
+
|
184 |
+
with gr.Column():
|
185 |
+
depth_model_dropdown = gr.Dropdown(
|
186 |
+
label="Depth Estimation Model",
|
187 |
+
choices=list(DEPTH_MODELS.keys()),
|
188 |
+
value=list(DEPTH_MODELS.keys())[0]
|
189 |
+
)
|
190 |
+
depth_model_load_btn = gr.Button("Load Depth Model")
|
191 |
+
depth_model_status = gr.Textbox(label="Status", value="No model loaded")
|
192 |
+
|
193 |
+
with gr.Tab("Image Processing"):
|
194 |
+
with gr.Row():
|
195 |
+
with gr.Column():
|
196 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
197 |
+
method = gr.Radio(label="Processing Method",
|
198 |
+
choices=["Segmented Background Blur", "Depth-based Variable Blur"],
|
199 |
+
value="Segmented Background Blur")
|
200 |
+
blur_intensity = gr.Slider(label="Blur Intensity (Maximum Blur Radius)",
|
201 |
+
minimum=1, maximum=30, step=1, value=15)
|
202 |
+
blur_type = gr.Dropdown(label="Blur Type",
|
203 |
+
choices=["Gaussian Blur", "Lens Blur"],
|
204 |
+
value="Gaussian Blur")
|
205 |
+
run_button = gr.Button("Process Image")
|
206 |
+
with gr.Column():
|
207 |
+
output_image = gr.Image(label="Output Image")
|
208 |
+
mask_output = gr.Image(label="Mask")
|
209 |
+
|
210 |
+
# Set up event handlers
|
211 |
+
seg_model_load_btn.click(
|
212 |
+
fn=load_segmentation_model,
|
213 |
+
inputs=[seg_model_dropdown],
|
214 |
+
outputs=[seg_model_status]
|
215 |
+
)
|
216 |
+
|
217 |
+
depth_model_load_btn.click(
|
218 |
+
fn=load_depth_model,
|
219 |
+
inputs=[depth_model_dropdown],
|
220 |
+
outputs=[depth_model_status]
|
221 |
+
)
|
222 |
+
|
223 |
+
run_button.click(
|
224 |
+
fn=process_image,
|
225 |
+
inputs=[input_image, method, blur_intensity, blur_type],
|
226 |
+
outputs=[output_image, mask_output]
|
227 |
+
)
|
228 |
+
|
229 |
+
# Load default models on startup
|
230 |
+
demo.load(
|
231 |
+
fn=lambda: (
|
232 |
+
load_segmentation_model(list(SEGMENTATION_MODELS.keys())[0]),
|
233 |
+
load_depth_model(list(DEPTH_MODELS.keys())[0])
|
234 |
+
),
|
235 |
+
inputs=None,
|
236 |
+
outputs=[seg_model_status, depth_model_status]
|
237 |
+
)
|
238 |
|
239 |
# Launch the app
|
240 |
demo.launch()
|