Spaces:
Runtime error
Runtime error
File size: 1,321 Bytes
a1c995c bcb28b5 207598c a1c995c 719c01b a1c995c 3561e6d 207598c a1c995c bcb28b5 3561e6d a1c995c bcb28b5 a1c995c bcb28b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize Hugging Face Inference Client
def get_client(model_name):
return InferenceClient(model=model_name)
# Function to generate the image based on selected model and prompt
def generate_image(prompt, model_name):
client = get_client(model_name)
response = client.text_to_image(prompt, guidance_scale=7.5)
return response
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Image Generator using Hugging Face Inference Client")
with gr.Row():
with gr.Column():
# Dropdown for model selection
prompt_model = gr.Textbox(label="Enter your prompt", placeholder="your model...")
# Input for text prompt
prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Describe the image you want...")
# Button to generate image
generate_button = gr.Button("Generate Image")
with gr.Column():
# Image output
image_output = gr.Image(label="Generated Image")
# Link the button click to the function
generate_button.click(generate_image, inputs=[prompt_model, prompt_input], outputs=image_output)
# Launch the Gradio app
demo.launch()
|