nevreal commited on
Commit
3561e6d
·
verified ·
1 Parent(s): 207598c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -1,15 +1,12 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
-
5
-
6
  def update_model(selected_model, use_textbox, custom_model):
7
  if use_textbox:
8
  return custom_model # Return the custom model from textbox
9
  else:
10
  return selected_model # Return the selected model from dropdown
11
 
12
-
13
  # Initialize Hugging Face Inference Client
14
  def get_client(model_name):
15
  return InferenceClient(model=model_name)
@@ -32,13 +29,14 @@ with gr.Blocks() as demo:
32
  }
33
 
34
  gr.Markdown("# Text to Image Generator using Hugging Face Inference Client")
 
35
  with gr.Row():
36
  use_textbox = gr.Checkbox(label="Use Custom Model", value=False)
37
 
38
  with gr.Row():
39
  # Input for text prompt
40
  prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Describe the image you want...")
41
-
42
  # Button to generate image
43
  generate_button = gr.Button("Generate Image")
44
 
@@ -49,20 +47,19 @@ with gr.Blocks() as demo:
49
  choices=list(model_options.keys()), # Display model names
50
  value="FLUX 1.0 (black-forest-labs)", # Default model
51
  )
52
- custom_model_textbox = gr.Textbox(label="Enter Custom Model", placeholder="Type your model name here")
 
53
 
54
  output = gr.Textbox(label="Selected Model", interactive=False)
55
 
56
-
57
-
58
  with gr.Row():
59
  submit_button = gr.Button("Submit Option")
 
60
  with gr.Column():
61
  # Image output
62
  image_output = gr.Image(label="Generated Image")
63
 
64
-
65
- # Event to update the selected model based on the checkbox
66
  use_textbox.change(
67
  lambda checked: model_dropdown.update(visible=not checked, value=None),
68
  inputs=[use_textbox],
@@ -76,15 +73,18 @@ with gr.Blocks() as demo:
76
  )
77
 
78
  # Button to confirm selection
79
-
80
  submit_button.click(
81
  update_model,
82
  inputs=[model_dropdown, use_textbox, custom_model_textbox],
83
  outputs=[output]
84
- )
85
 
86
- # Link the button click to the function
87
- generate_button.click(generate_image, inputs=[prompt_input, model_dropdown], outputs=image_output)
 
 
 
 
88
 
89
  # Launch the Gradio app
90
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
 
 
4
  def update_model(selected_model, use_textbox, custom_model):
5
  if use_textbox:
6
  return custom_model # Return the custom model from textbox
7
  else:
8
  return selected_model # Return the selected model from dropdown
9
 
 
10
  # Initialize Hugging Face Inference Client
11
  def get_client(model_name):
12
  return InferenceClient(model=model_name)
 
29
  }
30
 
31
  gr.Markdown("# Text to Image Generator using Hugging Face Inference Client")
32
+
33
  with gr.Row():
34
  use_textbox = gr.Checkbox(label="Use Custom Model", value=False)
35
 
36
  with gr.Row():
37
  # Input for text prompt
38
  prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Describe the image you want...")
39
+
40
  # Button to generate image
41
  generate_button = gr.Button("Generate Image")
42
 
 
47
  choices=list(model_options.keys()), # Display model names
48
  value="FLUX 1.0 (black-forest-labs)", # Default model
49
  )
50
+
51
+ custom_model_textbox = gr.Textbox(label="Enter Custom Model", placeholder="Type your model name here", visible=False)
52
 
53
  output = gr.Textbox(label="Selected Model", interactive=False)
54
 
 
 
55
  with gr.Row():
56
  submit_button = gr.Button("Submit Option")
57
+
58
  with gr.Column():
59
  # Image output
60
  image_output = gr.Image(label="Generated Image")
61
 
62
+ # Event to update the selected model based on the checkbox
 
63
  use_textbox.change(
64
  lambda checked: model_dropdown.update(visible=not checked, value=None),
65
  inputs=[use_textbox],
 
73
  )
74
 
75
  # Button to confirm selection
 
76
  submit_button.click(
77
  update_model,
78
  inputs=[model_dropdown, use_textbox, custom_model_textbox],
79
  outputs=[output]
80
+ )
81
 
82
+ # Link the button click to the image generation function
83
+ generate_button.click(
84
+ generate_image,
85
+ inputs=[prompt_input, output],
86
+ outputs=image_output
87
+ )
88
 
89
  # Launch the Gradio app
90
  demo.launch()