File size: 11,517 Bytes
d658e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8489440
d658e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a642818
 
 
d658e55
 
a642818
d658e55
 
 
 
 
 
 
 
 
 
a642818
d658e55
 
 
 
 
 
 
 
 
 
 
a642818
d658e55
a642818
d658e55
 
a642818
d658e55
a642818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d658e55
a642818
d658e55
 
 
 
 
 
 
 
 
2fdcc5e
d658e55
 
 
 
 
a642818
2fdcc5e
a642818
 
 
 
 
 
2fdcc5e
d658e55
a642818
d658e55
2fdcc5e
d658e55
 
 
a642818
2fdcc5e
 
 
 
 
 
 
a642818
 
2fdcc5e
a642818
 
d658e55
 
 
 
a642818
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy.io.wavfile as wav
from scipy.fftpack import idct
import gradio as gr
import os
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import soundfile as sf

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load speech-to-text model
try:
    speech_recognizer = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to(device)
    speech_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
    print("Speech recognition model loaded successfully!")
except Exception as e:
    print(f"Error loading speech recognition model: {e}")
    speech_recognizer = None
    speech_processor = None

# Load text-to-speech models
try:
    # Load processor and model
    tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
    tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
    tts_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
    
    # Load speaker embeddings
    speaker_embeddings = torch.load("./speaker_embedding.pt").to(device)
except Exception as e:
    print(f"Error loading text-to-speech models: {e}")
    tts_processor = None
    tts_model = None
    tts_vocoder = None
    speaker_embeddings = None

# Modele CNN
class modele_CNN(nn.Module):
    def __init__(self, num_classes=7, dropout=0.3):
        super(modele_CNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
        self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(64 * 1 * 62, 128) 
        self.fc2 = nn.Linear(128, num_classes)
        self.dropout = nn.Dropout(dropout)
    
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = x.view(x.size(0), -1)
        x = self.dropout(F.relu(self.fc1(x)))
        x = self.fc2(x)
        return x        

# Audio processor
class AudioProcessor:
    def Mel2Hz(self, mel): return 700 * (np.power(10, mel/2595)-1)
    def Hz2Mel(self, freq): return 2595 * np.log10(1+freq/700)
    def Hz2Ind(self, freq, fs, Tfft): return (freq*Tfft/fs).astype(int)
    
    def hamming(self, T): 
        if T <= 1:
            return np.ones(T)
        return 0.54-0.46*np.cos(2*np.pi*np.arange(T)/(T-1))

    def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000):
        Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs/2)), nf+2)), fs, Tfft)
        filtres = np.zeros((int(Tfft/2), nf))
        for i in range(nf): filtres[Indices[i]:Indices[i+2], i] = self.hamming(Indices[i+2]-Indices[i])
        return filtres

    def spectrogram(self, x, T, p, Tfft):
        S = [] 
        for i in range(0, len(x)-T, p): S.append(x[i:i+T]*self.hamming(T))
        S = np.fft.fft(S, Tfft)
        return np.abs(S), np.angle(S)
    
    def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512):
        data = (data[1]-np.mean(data[1]))/np.std(data[1])
        amp, ph = self.spectrogram(data, T, p, Tfft)
        amp_f = np.log10(np.dot(amp[:, :int(Tfft/2)], filtres)+1)
        return idct(amp_f, n=nc, norm='ortho')

    def process_audio(self, audio_data, sr, audio_length=32000):
        if sr != 16000:
            audio_resampled = np.interp(
                np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
                np.arange(len(audio_data)),
                audio_data
            )
            sgn = audio_resampled
            fs = 16000
        else:
            sgn = audio_data
            fs = sr
        
        sgn = np.array(sgn, dtype=np.float32)
        
        if len(sgn) > audio_length:
            sgn = sgn[:audio_length]
        else:
            sgn = np.pad(sgn, (0, audio_length - len(sgn)), mode='constant')
        
        filtres = self.FiltresMel(fs)
        sgn_features = self.mfcc([fs, sgn], filtres)
        
        mfcc_tensor = torch.tensor(sgn_features.T, dtype=torch.float32)
        mfcc_tensor = mfcc_tensor.unsqueeze(0).unsqueeze(0)
        
        return mfcc_tensor

# Speech recognition function
def recognize_speech(audio_path):
    if speech_recognizer is None or speech_processor is None:
        return "Speech recognition model not available"
    
    try:
        # Read audio file
        audio_data, sr = sf.read(audio_path)
        
        # Resample to 16kHz if needed
        if sr != 16000:
            audio_data = np.interp(
                np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
                np.arange(len(audio_data)),
                audio_data
            )
            sr = 16000
        
        # Process audio
        inputs = speech_processor(audio_data, sampling_rate=sr, return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        # Generate transcription
        generated_ids = speech_recognizer.generate(**inputs)
        transcription = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        
        return transcription
    except Exception as e:
        return f"Speech recognition error: {str(e)}"

# Speech synthesis function
def synthesize_speech(text):
    if tts_processor is None or tts_model is None or tts_vocoder is None or speaker_embeddings is None:
        return None
    
    try:
        # Preprocess text
        inputs = tts_processor(text=text, return_tensors="pt").to(device)
        
        # Generate speech with speaker embeddings
        spectrogram = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings)
        
        # Convert to waveform
        with torch.no_grad():
            speech = tts_vocoder(spectrogram)
        
        # Convert to numpy array and normalize
        speech = speech.cpu().numpy()
        speech = speech / np.max(np.abs(speech))
        
        return (16000, speech.squeeze())
    except Exception as e:
        print(f"Speech synthesis error: {str(e)}")
        return None

# ... (keep all previous imports and class definitions)

# Updated predict_speaker function to return consistent values
def predict_speaker(audio, model, processor):
    if audio is None:
        return "Aucun audio détecté.", {}, "Aucun texte reconnu", "Inconnu"  # Now returns 4 values
    
    try:
        audio_data, sr = sf.read(audio)
        input_tensor = processor.process_audio(audio_data, sr)
        
        device = next(model.parameters()).device
        input_tensor = input_tensor.to(device)
        
        with torch.no_grad():
            output = model(input_tensor)
            print(output)  # Debug output
            probabilities = F.softmax(output, dim=1)
            confidence, predicted_class = torch.max(probabilities, 1)
        
        speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"]
        predicted_speaker = speakers[predicted_class.item()]
        
        result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item()*100:.2f}%)"
        
        probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())}
        
        # Recognize speech
        recognized_text = recognize_speech(audio) if speech_recognizer else "Modèle de reconnaissance vocale non disponible"
        
        return result, probs_dict, recognized_text, predicted_speaker  # Now returns 4 values
    
    except Exception as e:
        return f"Erreur : {str(e)}", {}, "Erreur de reconnaissance", "Inconnu"

# Updated recognize function
def recognize(audio, selected_model):
    model = load_model(model_filename=selected_model)
    if model is None:
        return "Erreur: Modèle non chargé", None, "Erreur", None
    
    res, probs, text, speaker = predict_speaker(audio, model, processor)  # Now expects 4 values
    
    # Generate plot
    fig = None
    if probs:
        fig, ax = plt.subplots(figsize=(10, 6))
        ax.bar(probs.keys(), probs.values(), color='skyblue')
        ax.set_ylim([0, 1])
        ax.set_ylabel("Confiance")
        ax.set_xlabel("Locuteurs")
        ax.set_title("Probabilités de reconnaissance")
        plt.xticks(rotation=45)
        plt.tight_layout()
    
    # Generate speech synthesis if text was recognized
    synth_audio = None
    if synthesizer is not None and text and "erreur" not in text.lower():
        try:
            synth_text = f"Le locuteur {speaker} a dit : {text}" if speaker else f"Le locuteur a dit : {text}"
            synth_audio = synthesize_speech(synth_text)
        except Exception as e:
            print(f"Erreur de synthèse vocale: {e}")
    
    return res, fig, text, synth_audio if synth_audio else None

# Updated interface creation
def create_interface():
    processor = AudioProcessor()
    
    with gr.Blocks(title="Reconnaissance de Locuteur") as interface:
        gr.Markdown("# 🗣️ Reconnaissance de Locuteur")
        gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.")
        
        with gr.Row():
            with gr.Column():
                # Dropdown pour sélectionner le modèle
                model_selector = gr.Dropdown(
                    choices=["model_1.pth", "model_2.pth", "model_3.pth"],
                    value="model_3.pth",
                    label="Choisissez le modèle"
                )
                
                # Créer des onglets pour Microphone et Upload Audio
                with gr.Tab("Microphone"):
                    mic_input = gr.Audio(sources=["microphone"], type="filepath", label="🎙️ Enregistrer depuis le microphone")
                
                with gr.Tab("Upload Audio"):
                    file_input = gr.Audio(sources=["upload"], type="filepath", label="📁 Télécharger un fichier audio")
                
                # Bouton pour démarrer la reconnaissance
                record_btn = gr.Button("Reconnaître")
                
            with gr.Column():
                # Résultat, graphique et texte reconnu
                result_text = gr.Textbox(label="Résultat")
                plot_output = gr.Plot(label="Confiance par locuteur")
                recognized_text = gr.Textbox(label="Texte reconnu")
                audio_output = gr.Audio(label="Synthèse vocale", visible=False)
                
            # Fonction de clique pour la reconnaissance
            def recognize(audio, selected_model):
                # Traitement audio et modèle à charger...
                pass  # Remplace ici avec ton code de traitement
                
        # Lier le bouton "Reconnaître" à la fonction
        record_btn.click(
            fn=recognize,
            inputs=[mic_input, file_input, model_selector],  # Remplacer Union par les deux inputs distincts
            outputs=[result_text, plot_output, recognized_text, audio_output]
        )
    return interface

if __name__ == "__main__":
    app = create_interface()
    app.launch(share=True)