Spaces:
Running
Running
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import scipy.io.wavfile as wav
|
6 |
+
from scipy.fftpack import idct
|
7 |
+
import gradio as gr
|
8 |
+
import os
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
|
12 |
+
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
13 |
+
from datasets import load_dataset
|
14 |
+
import soundfile as sf
|
15 |
+
|
16 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
17 |
+
print(f"Using device: {device}")
|
18 |
+
|
19 |
+
# Load speech-to-text model
|
20 |
+
try:
|
21 |
+
speech_recognizer = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to(device)
|
22 |
+
speech_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
23 |
+
print("Speech recognition model loaded successfully!")
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error loading speech recognition model: {e}")
|
26 |
+
speech_recognizer = None
|
27 |
+
speech_processor = None
|
28 |
+
|
29 |
+
# Load text-to-speech models
|
30 |
+
try:
|
31 |
+
# Load processor and model
|
32 |
+
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
33 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
34 |
+
tts_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
35 |
+
|
36 |
+
# Load speaker embeddings
|
37 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
38 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
|
39 |
+
print("Text-to-speech models loaded successfully!")
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error loading text-to-speech models: {e}")
|
42 |
+
tts_processor = None
|
43 |
+
tts_model = None
|
44 |
+
tts_vocoder = None
|
45 |
+
speaker_embeddings = None
|
46 |
+
|
47 |
+
# Modele CNN
|
48 |
+
class modele_CNN(nn.Module):
|
49 |
+
def __init__(self, num_classes=7, dropout=0.3):
|
50 |
+
super(modele_CNN, self).__init__()
|
51 |
+
self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
|
52 |
+
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
53 |
+
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
|
54 |
+
self.pool = nn.MaxPool2d(2, 2)
|
55 |
+
self.fc1 = nn.Linear(64 * 1 * 62, 128)
|
56 |
+
self.fc2 = nn.Linear(128, num_classes)
|
57 |
+
self.dropout = nn.Dropout(dropout)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = self.pool(F.relu(self.conv1(x)))
|
61 |
+
x = self.pool(F.relu(self.conv2(x)))
|
62 |
+
x = self.pool(F.relu(self.conv3(x)))
|
63 |
+
x = x.view(x.size(0), -1)
|
64 |
+
x = self.dropout(F.relu(self.fc1(x)))
|
65 |
+
x = self.fc2(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
# Audio processor
|
69 |
+
class AudioProcessor:
|
70 |
+
def Mel2Hz(self, mel): return 700 * (np.power(10, mel/2595)-1)
|
71 |
+
def Hz2Mel(self, freq): return 2595 * np.log10(1+freq/700)
|
72 |
+
def Hz2Ind(self, freq, fs, Tfft): return (freq*Tfft/fs).astype(int)
|
73 |
+
|
74 |
+
def hamming(self, T):
|
75 |
+
if T <= 1:
|
76 |
+
return np.ones(T)
|
77 |
+
return 0.54-0.46*np.cos(2*np.pi*np.arange(T)/(T-1))
|
78 |
+
|
79 |
+
def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000):
|
80 |
+
Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs/2)), nf+2)), fs, Tfft)
|
81 |
+
filtres = np.zeros((int(Tfft/2), nf))
|
82 |
+
for i in range(nf): filtres[Indices[i]:Indices[i+2], i] = self.hamming(Indices[i+2]-Indices[i])
|
83 |
+
return filtres
|
84 |
+
|
85 |
+
def spectrogram(self, x, T, p, Tfft):
|
86 |
+
S = []
|
87 |
+
for i in range(0, len(x)-T, p): S.append(x[i:i+T]*self.hamming(T))
|
88 |
+
S = np.fft.fft(S, Tfft)
|
89 |
+
return np.abs(S), np.angle(S)
|
90 |
+
|
91 |
+
def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512):
|
92 |
+
data = (data[1]-np.mean(data[1]))/np.std(data[1])
|
93 |
+
amp, ph = self.spectrogram(data, T, p, Tfft)
|
94 |
+
amp_f = np.log10(np.dot(amp[:, :int(Tfft/2)], filtres)+1)
|
95 |
+
return idct(amp_f, n=nc, norm='ortho')
|
96 |
+
|
97 |
+
def process_audio(self, audio_data, sr, audio_length=32000):
|
98 |
+
if sr != 16000:
|
99 |
+
audio_resampled = np.interp(
|
100 |
+
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
|
101 |
+
np.arange(len(audio_data)),
|
102 |
+
audio_data
|
103 |
+
)
|
104 |
+
sgn = audio_resampled
|
105 |
+
fs = 16000
|
106 |
+
else:
|
107 |
+
sgn = audio_data
|
108 |
+
fs = sr
|
109 |
+
|
110 |
+
sgn = np.array(sgn, dtype=np.float32)
|
111 |
+
|
112 |
+
if len(sgn) > audio_length:
|
113 |
+
sgn = sgn[:audio_length]
|
114 |
+
else:
|
115 |
+
sgn = np.pad(sgn, (0, audio_length - len(sgn)), mode='constant')
|
116 |
+
|
117 |
+
filtres = self.FiltresMel(fs)
|
118 |
+
sgn_features = self.mfcc([fs, sgn], filtres)
|
119 |
+
|
120 |
+
mfcc_tensor = torch.tensor(sgn_features.T, dtype=torch.float32)
|
121 |
+
mfcc_tensor = mfcc_tensor.unsqueeze(0).unsqueeze(0)
|
122 |
+
|
123 |
+
return mfcc_tensor
|
124 |
+
|
125 |
+
# Speech recognition function
|
126 |
+
def recognize_speech(audio_path):
|
127 |
+
if speech_recognizer is None or speech_processor is None:
|
128 |
+
return "Speech recognition model not available"
|
129 |
+
|
130 |
+
try:
|
131 |
+
# Read audio file
|
132 |
+
audio_data, sr = sf.read(audio_path)
|
133 |
+
|
134 |
+
# Resample to 16kHz if needed
|
135 |
+
if sr != 16000:
|
136 |
+
audio_data = np.interp(
|
137 |
+
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
|
138 |
+
np.arange(len(audio_data)),
|
139 |
+
audio_data
|
140 |
+
)
|
141 |
+
sr = 16000
|
142 |
+
|
143 |
+
# Process audio
|
144 |
+
inputs = speech_processor(audio_data, sampling_rate=sr, return_tensors="pt")
|
145 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
146 |
+
|
147 |
+
# Generate transcription
|
148 |
+
generated_ids = speech_recognizer.generate(**inputs)
|
149 |
+
transcription = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
150 |
+
|
151 |
+
return transcription
|
152 |
+
except Exception as e:
|
153 |
+
return f"Speech recognition error: {str(e)}"
|
154 |
+
|
155 |
+
# Speech synthesis function
|
156 |
+
def synthesize_speech(text):
|
157 |
+
if tts_processor is None or tts_model is None or tts_vocoder is None or speaker_embeddings is None:
|
158 |
+
return None
|
159 |
+
|
160 |
+
try:
|
161 |
+
# Preprocess text
|
162 |
+
inputs = tts_processor(text=text, return_tensors="pt").to(device)
|
163 |
+
|
164 |
+
# Generate speech with speaker embeddings
|
165 |
+
spectrogram = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
166 |
+
|
167 |
+
# Convert to waveform
|
168 |
+
with torch.no_grad():
|
169 |
+
speech = tts_vocoder(spectrogram)
|
170 |
+
|
171 |
+
# Convert to numpy array and normalize
|
172 |
+
speech = speech.cpu().numpy()
|
173 |
+
speech = speech / np.max(np.abs(speech))
|
174 |
+
|
175 |
+
return (16000, speech.squeeze())
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Speech synthesis error: {str(e)}")
|
178 |
+
return None
|
179 |
+
|
180 |
+
# Fonction prédiction
|
181 |
+
def predict_speaker(audio, model, processor):
|
182 |
+
if audio is None:
|
183 |
+
return "Aucun audio détecté.", None, None
|
184 |
+
|
185 |
+
try:
|
186 |
+
audio_data, sr = sf.read(audio)
|
187 |
+
input_tensor = processor.process_audio(audio_data, sr)
|
188 |
+
|
189 |
+
device = next(model.parameters()).device
|
190 |
+
input_tensor = input_tensor.to(device)
|
191 |
+
|
192 |
+
with torch.no_grad():
|
193 |
+
output = model(input_tensor)
|
194 |
+
print(output)
|
195 |
+
probabilities = F.softmax(output, dim=1)
|
196 |
+
confidence, predicted_class = torch.max(probabilities, 1)
|
197 |
+
|
198 |
+
speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"]
|
199 |
+
predicted_speaker = speakers[predicted_class.item()]
|
200 |
+
|
201 |
+
result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item()*100:.2f}%)"
|
202 |
+
|
203 |
+
probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())}
|
204 |
+
|
205 |
+
# Recognize speech
|
206 |
+
recognized_text = recognize_speech(audio)
|
207 |
+
|
208 |
+
return result, probs_dict, recognized_text,predicted_speaker
|
209 |
+
|
210 |
+
except Exception as e:
|
211 |
+
return f"Erreur : {str(e)}", None, None
|
212 |
+
|
213 |
+
# Charger modèle
|
214 |
+
def load_model(model_id="nareauow/my_speech_recognition", model_filename="model_3.pth"):
|
215 |
+
try:
|
216 |
+
model_path = hf_hub_download(repo_id=model_id, filename=model_filename)
|
217 |
+
model = modele_CNN(num_classes=7, dropout=0.)
|
218 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
219 |
+
model.to(device)
|
220 |
+
model.eval()
|
221 |
+
print("Modèle chargé avec succès !")
|
222 |
+
return model
|
223 |
+
except Exception as e:
|
224 |
+
print(f"Erreur de chargement: {e}")
|
225 |
+
return None
|
226 |
+
|
227 |
+
# Gradio Interface
|
228 |
+
def create_interface():
|
229 |
+
processor = AudioProcessor()
|
230 |
+
|
231 |
+
with gr.Blocks(title="Reconnaissance de Locuteur") as interface:
|
232 |
+
gr.Markdown("# 🗣️ Reconnaissance de Locuteur")
|
233 |
+
gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.")
|
234 |
+
|
235 |
+
with gr.Row():
|
236 |
+
with gr.Column():
|
237 |
+
model_selector = gr.Dropdown(
|
238 |
+
choices=["model_1.pth", "model_2.pth", "model_3.pth"],
|
239 |
+
value="model_3.pth",
|
240 |
+
label="Choisissez le modèle"
|
241 |
+
)
|
242 |
+
audio_input = gr.Audio(sources=["microphone"], type="filepath", label="🎙️ Parlez ici")
|
243 |
+
record_btn = gr.Button("Reconnaître")
|
244 |
+
with gr.Column():
|
245 |
+
result_text = gr.Textbox(label="Résultat")
|
246 |
+
plot_output = gr.Plot(label="Confiance par locuteur")
|
247 |
+
recognized_text = gr.Textbox(label="Texte reconnu")
|
248 |
+
audio_output = gr.Audio(label="Synthèse vocale", type="numpy")
|
249 |
+
|
250 |
+
def recognize(audio, selected_model):
|
251 |
+
model = load_model(model_filename=selected_model)
|
252 |
+
res, probs, text,locuteur = predict_speaker(audio, model, processor)
|
253 |
+
|
254 |
+
# Generate plot
|
255 |
+
fig = None
|
256 |
+
if probs:
|
257 |
+
fig, ax = plt.subplots()
|
258 |
+
ax.bar(probs.keys(), probs.values(), color='skyblue')
|
259 |
+
ax.set_ylim([0, 1])
|
260 |
+
ax.set_ylabel("Confiance")
|
261 |
+
ax.set_xlabel("Locuteurs")
|
262 |
+
plt.xticks(rotation=45)
|
263 |
+
|
264 |
+
# Generate speech synthesis if text was recognized
|
265 |
+
synth_audio = None
|
266 |
+
if text and "error" not in text.lower():
|
267 |
+
synth_text = f"{locuteur} said : {text}"
|
268 |
+
synth_audio = synthesize_speech(synth_text)
|
269 |
+
|
270 |
+
return res, fig, text, synth_audio
|
271 |
+
|
272 |
+
record_btn.click(fn=recognize,
|
273 |
+
inputs=[audio_input, model_selector],
|
274 |
+
outputs=[result_text, plot_output, recognized_text, audio_output])
|
275 |
+
|
276 |
+
gr.Markdown("""### Comment utiliser ?
|
277 |
+
- Choisissez le modèle.
|
278 |
+
- Cliquez sur 🎙️ pour enregistrer votre voix.
|
279 |
+
- Cliquez sur **Reconnaître** pour obtenir la prédiction.
|
280 |
+
""")
|
281 |
+
|
282 |
+
return interface
|
283 |
+
|
284 |
+
# Lancer
|
285 |
+
if __name__ == "__main__":
|
286 |
+
app = create_interface()
|
287 |
+
app.launch(share=True)
|