Spaces:
Paused
Paused
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import torch | |
from models.vc.Noro.noro_trainer import NoroTrainer | |
from utils.util import load_config | |
def build_trainer(args, cfg): | |
supported_trainer = { | |
"VC": NoroTrainer, | |
} | |
trainer_class = supported_trainer[cfg.model_type] | |
trainer = trainer_class(args, cfg) | |
return trainer | |
def cuda_relevant(deterministic=False): | |
torch.cuda.empty_cache() | |
# TF32 on Ampere and above | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.allow_tf32 = True | |
# Deterministic | |
torch.backends.cudnn.deterministic = deterministic | |
torch.backends.cudnn.benchmark = not deterministic | |
torch.use_deterministic_algorithms(deterministic) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--config", | |
default="config.json", | |
help="json files for configurations.", | |
required=True, | |
) | |
parser.add_argument( | |
"--exp_name", | |
type=str, | |
default="exp_name", | |
help="A specific name to note the experiment", | |
required=True, | |
) | |
parser.add_argument( | |
"--resume", action="store_true", help="The model name to restore" | |
) | |
parser.add_argument( | |
"--log_level", default="warning", help="logging level (debug, info, warning)" | |
) | |
parser.add_argument( | |
"--resume_type", | |
type=str, | |
default="resume", | |
help="Resume training or finetuning.", | |
) | |
parser.add_argument( | |
"--checkpoint_path", | |
type=str, | |
default=None, | |
help="Checkpoint for resume training or finetuning.", | |
) | |
args = parser.parse_args() | |
cfg = load_config(args.config) | |
print("experiment name: ", args.exp_name) | |
# # CUDA settings | |
cuda_relevant() | |
# Build trainer | |
print(f"Building {cfg.model_type} trainer") | |
trainer = build_trainer(args, cfg) | |
torch.set_num_threads(1) | |
torch.set_num_interop_threads(1) | |
print(f"Start training {cfg.model_type} model") | |
trainer.train_loop() | |
if __name__ == "__main__": | |
main() | |